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We integrate the lattice Boltzmann modelsLBM d and lattice spring modelsLSMd to capture the coupling
between a compliant bounding surface and the hydrodynamic response of an enclosed fluid. We focus on an
elastic, spherical shell filled with a Newtonian fluid where no-slip boundary conditions induce the interaction.
We calculate the “breathing mode” oscillations for this system and find good agreement with analytical
solutions. Furthermore, we simulate the impact of the fluid-filled, elastic shell on a hard wall and on an
adhesive surface. Understanding the dynamics of fluid-filled shells, especially near adhesive surfaces, can be
particularly important in the design of microcapsules for pharmaceutical and other technological applications.
Our studies reveal that the binding of these capsules to specific surfaces can be sensitive to the physical
properties of both the outer shell and the enclosed fluid. The integrated LBM-LSM methodology opens up the
possibility of accurately and efficiently capturing the dynamic coupling between fluid flow and a compliant
bounding surface in a broad variety of systems.
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I. INTRODUCTION

There are many systems of scientific importance where
both the hydrodynamic response of a fluid and the mechani-
cal response of an adjacent structure are dynamically
coupled. For example, in the biomechanics of either blood
flow in the cardiovascular system, or air flow in the respira-
tory system, the compliant nature of the vessels can have a
significant effect on the flow rate and wall shear stresses
f1,2g. Such fluid-flow–boundary interactions are commonly
referred to as simply “fluid-structure” interactions. These
fluid-structure interactions must also be taken into account to
optimize the design of aeroelastic aircraft wings, which may
experience “flutter”f3g, or large civil engineering structures,
which may undergo wind-induced oscillations and experi-
ence aerodynamic instabilitiesf4g. Computational modeling
of fluid-structure interactions is, therefore, of significant im-
portance to a wide range of scientific disciplines.

Conventional numerical solutions to fluid-structure inter-
action problems generally involve the coupling of a finite
element method for the structural analysis with either a finite
difference, finite volume, or finite element method to simu-
late the fluid dynamics. While the solid and fluid subsystems
can be solved simultaneouslyf5g, typically, an approach is
adopted that involves separate computer codes for the solid
and fluid systemsf1,6,7g. In this so-called “partitioned” ap-
proach, the governing equations of the fluid and solid phase
are solved individually and sequentially. The two codes are
then coupled through the boundary conditions at the solid-
fluid interface. For example, the stress that acts on the wetted
boundary from the fluid domain is passed as a load to the
solid domain, with the resultant deformation of the boundary
being returned to the fluid domain. This process is repeated
until consistent results are obtained that satisfy the con-
straints of both the fluid and the solid domains. The velocity
of the boundary can then be quasistatically obtained from the
difference in the boundary locations between consecutive
time steps. This method of coupling two separate codes is

particularly popular as it allows one to choose the most effi-
cient and applicable codes for both the fluid and solid do-
mains separately, thereby taking advantage of a wide range
of commercial packages that solve for either the structural
mechanics or the fluid dynamics.

Recently, however, lattice-based simulation techniques
have emerged as promising alternatives to more conventional
numerical schemesf8,9g. Unlike conventional numerical
schemessmeaning methods involving a direct discretization
of the continuum equationsd, these lattice models simulate
the underlying processes that give rise to the appropriate
continuum behavior. In particular, the lattice Boltzmann
model sLBM d incorporates the mesoscopic physics of fluid
“particles” propagating and colliding on a simple lattice such
that the averaged, long-wavelength properties of the system
obey the desired Navier-Stokes equationf9g. In a similar
fashion, the lattice spring modelsLSMd is adopted from ato-
mistic models of solid-state and molecular physicsf10g, and
involves a network of interconnected ”springs,” which de-
scribe the interactions between neighboring units. The large
scale behavior of the resultant system can be mapped onto
continuum elasticity theoryf11g. The LBM and LSM are,
therefore, both mesoscopic models, whose local rules are
guided by atomistic phenomena, but whose emergent behav-
ior captures the continuum properties of the system.

In this study, we take advantage of these mesoscale ap-
proaches to formulate a new technique for modeling solid-
fluid interactions by dynamically coupling the lattice Boltz-
mann and lattice spring methods. To validate the method, we
simulate the behavior of a Newtonian fluid that is enclosed in
an isotropic, elastic, spherical shell. As we detail in Sec. II,
this approach allows for adynamicinteraction between mov-
ing elastic walls and the enclosed fluid. The moving walls
exert a force on the fluid and, in turn, the confined fluid
reacts back on the walls. The specific system we consider
here is of particular relevance to microencapsulated fluids.
Microcapsules, which consist of an agent enclosed in an elas-
tic shell, are becoming increasingly important in the pharma-
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ceutical, cosmetics, and food industries. For example, micro-
capsules containing anticancer drugs can be tailored to target
tumor cells or lesionsf12g. In such applications, the adhesion
of microcapsules onto specific surfaces can be essential to
their functionalityf13g. Therefore, in the current study, as a
demonstration of the approach, we investigate the dynamics
of a fluid-filled elastic shell and, in particular, examine the
collision of this deformable capsule with either a hard or an
adhesive surface. We note that a recent study by O’Brien and
Bean f14g uses a similar methodology to couple two-
dimensional lattice Boltzmann and lattice spring models.
However, in their study the “lattice Boltzmann”sor fluidd
nodes and the “lattice spring”sor solidd nodes are part of one
and the same lattice. They then obtain the “spring forces” on
the links connecting fluid and solid nodes directly from the
solid-fluid boundary condition, using the same bounce-back
rule as used in our studyfsee Eq.s14d belowg. This method,
however, does not allow for large deformations of the solid-
fluid interface.

Before discussing the different methods in detail, we pro-
vide a brief background of the LBM and LSM. In particular,
the lattice Boltzmann method is an effective and expedient
method for simulating fluid flows. It has been shown to be
particularly effective for simulating the hydrodynamic be-
havior of complex, multiphase fluids and fluid flow around
complicated boundaries. For example, it has been used to
simulate the phase separation of binaryf15–17g, ternaryf18g,
and reactive multiphase fluidsf19g. Recently, a large number
of deformable biological cellssseparate fluid phasesd were
simulated in veinule flowf20g. The relative ease with which
the LBM can be implemented at irregularly shaped bound-
aries has facilitated the modeling, for example, ofsreactived
fluid flow through porous mediaf21–23g and blood flow
through stationary, rigid, artificial aortic valvesf24g and
stented arteriesf25g. The LBM is also suitable for modeling
fluid-structure interactions since complex remeshing proce-
dures for the fluid domain are not necessary. Fluid-structure
interactions involving the LBM have so far been limited to
either nondeformable structures, such as the simulation of
particle-fluid suspensionsf26–30g and artificial heart valves
f31g, or simple one-dimensional representations of the struc-
ture, i.e., the two-dimensional simulation of flow through a
tube whose radius is assumed to be pressure dependentf32g.
It is highly desirable, therefore, to couple the LBM with a
numerical model of elastic mechanics that allows for de-
formable walls.

The lattice spring model consists of a network of har-
monic springs that connect regularly spaced mass points.
Through the correct choice of spring constants, this model
can be directly mapped onto linear elasticity theoryf11,33g.
The main advantage of the LSM over alternative mechanical
models is its computational efficiency and ease with which
the deformation of highly heterogeneous systems can be
simulatedf8,34,35g. For example, the LSM has been shown
to accurately capture the elastic fields that correspond to
Eshelby’s well-known theoretical solutions for the elastic be-
havior of an inhomogeneous materialf11g and has been suc-
cessfully used to simulate the deformation of multiparticulate
systemsf34–38g. We therefore adopt the LSM as the me-
chanical model to couple with the LBM. In this manner,

simulations of fluid-structure interactions exploit the compu-
tational efficiency of both the LBM and LSM techniques.

In Sec.II, we detail the governing equations for both tech-
niques, and discuss how the two models are integrated to
yield our new approach. Section III describes our findings
that are obtained with this integrated approach. We validate
the model by calculating the “breathing mode” oscillations in
an elastic shell filled with a Newtonian fluid, and comparing
our results with analytic solutions. We then utilize the model
to examine the interaction between an encapsulated fluid and
a flat substrate. In particular, we vary the elastic constants of
the shell, the viscosity of the fluid and the interaction poten-
tial between the microcapsule and the substrate. The findings
provide insight into the role that each of the variables plays
in the adhesion of the capsule to a specified surface. Conse-
quently, the results can provide guidelines for designing mi-
crocapsules that bind to specific substrates.

II. METHODOLOGY

A. Lattice Boltzmann model

The lattice Boltzmann model is a lattice-based method for
simulating hydrodynamic flows. The simulations consist of
two processes, the first being the propagation of fluid “par-
ticles” to neighboring lattice sites and the second being col-
lisions between particles when they reach a site. Here, fluid
particles are representative of mesoscopic portions of the
fluid, and are described by a particle distribution function;
we use the term mesoscopic to represent a length scale be-
tween that of atomistic systems and continuum systems. The
time evolution of this particle distribution function is gov-
erned by the discretized Boltzmann equationf39g

f isr + eiDt,t + Dtd = f i
!sr ,td = f isr ,td + Viffsr ,tdg, s1d

where f isr ,td; fsr ,ei ,td describes the density of fluid par-
ticles at positionr and timet, with a velocityei. Here,r , ei
and t are discrete variables, but the distribution function it-
self is continuous. To illustrate the two separate stepsscolli-
sions and propagationd, we define f i

!sr ,td as the post-
collision particle distribution function.

The velocity ei in the ith direction is chosen such that
fluid particles propagate from one lattice site to the next in
exactly one time stepDt si.e., a distance ofueiDtud. The 19
velocities of our three-dimensional modelsoften termed
D3Q19d correspond to rest particlesse=f000gd, and to move-
ment to the nearest-se=h100jd and next-nearest-se=h110jd
neighbor directions of a simple cubic lattice. In the actual
simulations presented here, both the lattice spacingDx and
the time stepDt are taken to be unity.

The collision operatorViffsr ,tdg, accounts for the change
in f i due to instantaneous collisions at the lattice nodes; its
action depends on all thef i’s at a node, denoted collectively
by fsr ,td. We adopted a multirelaxation time collision opera-
tor f40g, which, in contrast to the more widely employed
single relaxation time collision operator, enables us to assign
independent values for both the shear and bulk viscosities
ssee Appendix Ad. External forces can be incorporated in the
collision step in order to mimic gravitational forces or an
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externally applied pressure gradient; however, such influ-
ences are not relevant to our study.

The hydrodynamic quantities, mass densityr, momentum
density j , and the momentum fluxP, are moments of the
distribution function

r = o
i

f i ,

j = o
i

f iei = rv,

P = o
i

f ieiei . s2d

Here,v is the local fluid velocity. In the LBM, these quanti-
ties evolve toward local equilibrium. For flow velocities
much less than the speed of sound, the local equilibrium
distribution function can be obtained by expanding the
Maxwell-Boltzmann distribution as a Taylor series in the lo-
cal velocityv, i.e.,

f i
eq= raiF1 +

v ·ei

cf
2 +

vv:seiei − cf
2I d

2cf
4 G , s3d

where cf
2=c2/3, with c=Dx/Dt, and cf is the isothermal

speed of sound in the fluid;I is the unit tensor. The weights
ai only depend on the magnitude of the velocityueiu and are
equal to 1

3, 1
18, and 1

36 for the rest particles, the nearest-
neighbor, and the next-nearest-neighbor directions, respec-
tively. The expansion in Eq.s3d is truncated at Osv2d, which
turns out to be sufficient to simulate the Navier-Stokes equa-
tion f41g. The second moment of the equilibrium distribution
function gives the familiar Eulerian expression for the stress
tensor

Peq= o
i

f i
eqeiei = pI + rvv, s4d

with an ideal-gas equation of statep=rcf
2.

Mass and momentum are conserved in the collision pro-
cess; henceoi f i =oi f i

eq andoi f iei =oi f i
eqei, as can be readily

verified from Eqs.s2d ands3d. However, the momentum flux
is modified by the collision operator. In particular, the non-
equilibrium stress tensorPneq;P−Peq, is modified accord-
ing to Eq. sA1d ssee Appendix Ad, resulting in a post-
collision nonequilibrium stress tensor that is given byf28g

Pneq,! = s1 + ldP̄neq+
1

3
s1 + lBdsPneq:I dI . s5d

Here,l and lB are relaxation parameters that appear in the
collision operator. They control the relaxation of the fluid
toward equilibrium and determine the shear and bulk viscosi-

ties of the fluid. The termPneq: I is the trace, andP̄neq

=Pneq− 1
3sPneq: I dI is the deviatoric part of the nonequilib-

rium stress tensor.
Using Eq.s5d for the post-collision nonequilibrium stress

tensor, we can write the post-collision distribution function
f i

! defined in Eq.s1d, asf28g

f i
! = aiFr +

j ·ei

cf
2 +

srvv + Pneq!d:seiei − cf
2I d

2cf
4 G . s6d

We emphasize that the collision process locally conserves
both mass and momentum, but relaxes the stresses toward
local equilibrium. We also emphasize that as the fluid
evolves toward equilibrium, the relaxation of the deviatoric
and hydrostatic portions of the stress tensor occurs indepen-
dently. This separation of relaxation times enables us to vary
independently the shear viscosityh and bulk viscosityhB
f28g, which are given by

h

r
= − cf

2S1

l
+

1

2
DDt,

hB

r
= − cf

2S 2

3lB
+

1

3
DDt. s7d

This allows us to simulate the hydrodynamics of Newtonain
fluids with a wide range of shear and bulk viscosities.

B. Lattice spring model

The solid elastic material is represented by a rotationally
invariant Hookean lattice spring model, consisting of a net-
work of harmonic springs that connect regularly spaced mass
points or nodes. The elastic energy associated with theith
node is given by

Ei =
k

2o
j

sur i j u − ur i j
0 ud2, s8d

where the summation runs over all nearest and next-nearest
neighbor nodes, i.e., over allh100j and h110j bonds of an
initially cubic lattice. Here,ur i j u is the distance between the
ith and j th nodes,ur i j

0 u is the equilibrium spring length andk
is the spring constantf42g. sNote that using a cubic lattice
consisting only ofh100j bonds is insufficient for capturing
isotropic elastic behaviorf11g.d This results in a forceFi j due
to an extension or contraction of the spring connecting nodes
i and j of the form

Fi j = −
]Ei

]r i j
= − kS ur i j u − ur i j

0 u
ur i j u

Dr i j . s9d

For small deformations, this system of equations can be
shown to obey linear elasticity theory and results in a
Young’s modulusE=5k/2Dx. This simple model is restricted
to a Poisson’s ratio ofn=1/4 f43,44g, although more com-
plicated many-body interactions can be included in order to
vary n f45,46g.

To capture the dynamics of this system, we must assign
masses to the nodes and integrate Newton’s equation of mo-
tion

Fi = Mi
]2r i

]t2
, s10d

with Mi the mass of the nodei andFi the force acting upon
it. We utilize the velocity Verlet algorithm to integrate Eq.
s10d. This is a well-known molecular dynamics algorithm
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that uses the positions, velocities, and accelerations at timet
to obtain the same quantities at timet+Dt in the following
way f47g:

r ist + Dtd = r istd + vistdDt +
1

2
aistdDt2,

viSt +
Dt

2
D = vistd +

1

2
aistdDt,

aist + Dtd =
Fistd
Mi

vist + Dtd = viSt +
Dt

2
D +

1

2
aist + DtdDt, s11d

where vi and ai are the velocity and acceleration nodei.
Therefore, given applied forces and initial deviations from
equilibrium, the dynamic evolution of the material, including
the propagation of undamped elastic waves, can be accu-
rately captured. Damping can be incorporated, for example,
through the inclusion of a viscous damping term proportional
to the velocity, but will not be considered here.

C. Solid-fluid coupling

In order to capture the fluid-structure interactions, LSM
nodes that are situated near the solid-fluid interface must
impose velocities on the enclosed fluid through boundary
conditions and, in turn, experience forces due to the fluid
pressure and viscous stresses. First, however, we must decide
which LBM nodes are “solid” and which are “fluid.” The
masses at the LSM nodes represent mesoscopic portions of
the elastic material. We can, therefore, define “solid LBM”
nodes as nodes within close proximityshalf the equilibrium
f111g lattice lengthd of a LSM node. All other nodes are
consequently “fluid LBM” nodes. This situation is depicted
in Fig. 1, which shows a two-dimensional representation of a
solid-fluid interface. The LSM lattice is represented by thick
lines and the underlying LBM lattice is represented by thin
lines. LBM nodes that lie within a given distance of a LSM
node srepresented by the dashed circles in the figured are
considered to be solid LBM nodes, while the remaining
nodes are considered to be fluid LBM nodes.

This characterization implies that fluid LBM nodes are
both created and destroyed as the LSM lattice deforms and
moves with respect to the underlying LBM latticeswhich is
fixed in spaced. If the solid material moves, such that fluid
nodes are created, then these nodes are assigned an equilib-
rium particle distribution functionfsee Eq.s3dg with a veloc-
ity equal to the local wall velocityfobtained in a manner
similar to Eq.s13d belowg and a mass density equal to the
average local mass density of the neighboring fluid nodes. At
this stage, we ignored the fact that forlÞ−1 orlBÞ−1, this
results in inaccuracies in the local shear stress. However,
most of our simulations use relaxation parameterssl’sd of
−1, resulting in a relaxation of the stresses in exactly one
timestepfsee Eq.s5dg. Hence, for these simulations, the post-
collision distribution function is completely determined by

only the mass density and the velocity, making our imple-
mentation correctfsee Eqs.s3d and s6d for Pneq,!=0g. We
note that this issue is not unique to our approach, but an
inherent problem of the link bounce-back rule and present in
any system with moving boundaries, as for example, in par-
ticle suspensionsf28,48g. We also note that it is possible to
use interpolation to obtain the nonequilibrium particle distri-
bution functionf49g, but we have not yet implemented this
idea f50g.

Fluid nodes that are destroyed are simply removed from
the fluid phase in a way discussed in detail by Nguyen and
Ladd f48g. This results in a rate of fluid mass that is de-
stroyed screatedd being equal to the rate at which mass is
introducedsremovedd in the system as a result of the link
bounce-back schemefsee Eq.s12d belowg, with an error that
is due only to a finite compressibility. However, the LBM is
applicable only to systems with sufficiently small compress-
ibility, thus minimizing this effect. In our simulations, we
checked the rate at which fluid mass is globally created or
destroyed and found the lack of global mass conservation to
be negligible.

The fluid interacts with the surrounding solid via the so-
called link bounce-back rule. This particular implementation
of the no-slip boundary condition at the solid-fluid interface
is robust, relatively simple, obeys global mass conservation,
and does not require surface normals or tracking of the actual
three-dimensional solid-fluid boundary. Its main disadvan-
tage is its first order accuracy in the spatial discretization, a
shortcoming that can be minimized by a calibration of the
effective location of the boundaryf26,28g or by using a par-
ticular set of eigenvalues of the collision operatorf51g.
For improved bounce-back schemes as well as references
to other implementations we refer to a recent paper by
Ginzburg and d’Humieresf51g.

In the link bounce-back scheme, the solid-fluid interface
is represented by LBM boundary nodes, defined as points in

FIG. 1. sColor onlined Two-dimensional representation of the
solid-fluid boundary. The lattice spring lattice is depicted by thick
lines while the lattice Boltzmann lattice is represented by thin lines.
Solid LBM nodes are defined as being nodes within a given dis-
tance of a LSM nodesshown here as dashed circles around LSM
surface nodesd. The remaining LBM nodes are then defined as fluid
nodes. Boundary nodes are located halfway on links connecting
fluid and solid nodes.
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space that are located halfway on each link that connects
neighboring solid and fluid LBM nodesssee Fig. 1d. Fluid
particles that are being propagated toward a boundary node
sin the i directiond are then reflected back in the direction
they came from and modified such thatf26g,

fksr ,t + Dtd = f i
!sr ,td −

2raiei ·vbsr bd
cf

2 , s12d

wherek is the direction opposite toi, andvbsr bd is the ve-
locity of the boundary node situated atr b=r +ei /2. In order
to obtain this velocity, we perform a weighted average of the
velocities at the surrounding LSM nodes, i.e.,

vbsr bd =
or

fvsr d/sr − r bd2g

or
f1/sr − r bd2g

, s13d

wherer andvsr d are the position and velocity of a neighbor-
ing LSM node, and the summation is taken to be over LSM
nodes within a cutoff distanceD. Hence, the closer a LSM
node lies to a boundary node, the larger its contribution in
defining the boundary node velocity. Here, the particularsr
−r bd−2 weighting is chosen for convenience. The optimal
value ofD depends on the resolution of the underlying lat-
tices, but has to be large enough to prevent unphysical fluc-
tuations in the boundary node velocities. These velocities
are, on the other hand, not very sensitive to the precise value
of D due to our choice of the weighting function and we
found the results to be nearly independent ofD for D
ù3Dx. In the simulations presented here, we usedD=5Dx.

As a result of the bounce-back rule, the fluid exerts a
force on the solid-fluid interface. This force is taken to be
equal to the rate of exchange in momentum that takes place
as the fluid particles are bounced back at the boundary nodes.
The contribution from a single bounce-back event is of the
form

FbSr b,t +
Dt

2
D = f i

!sr ,tdei − fksr ,t + Dtdek

= 2S f i
!sr ,td −

raiei ·vbsr bd
cf

2 Dei . s14d

In the applications discussed in this paper, we assume that, at
equilibrium, the elastic shell does not inflate due to the pres-
ence of the enclosed fluid. Hence, to obtain the applied force,
we subtract the equilibrium pressure due to the presence of
the fluid at rest, i.e.,

F̄bSr b,t +
Dt

2
D = FbSr b,t +

Dt

2
D − 2r0ai , s15d

with r0 being the equilibrium density. This force acts on the
boundary nodes of the LBM lattice and must therefore be
distributed among the neighboring LSM nodes. Once again,
a convenient choice is to weight these contributions in-
versely by the square of the distance between the boundary
nodes and the neighboring LSM nodes. Hence, the total force
on each LSM node is of the form

Fsr d = or b
F̄bsr bd

1/sr − r bd2

or
1/sr − r bd2

, s16d

where the summations, over both neighboring LSM nodes
sord and boundary nodessor b

d, are over nodes that are
within a certain cutoff distance, again chosen to be five lat-
tice spacings.

To summarize, the simulation proceeds through the itera-
tive update of both the LSM and LBM systems. A flowchart
of the coupling between these systems is shown in Fig. 2.
The LSM system is updated by first calculating the forces
that are acting on the LSM nodes, due to both the LSM
springs and the enclosed fluid. The positions, velocities, and
accelerations of the LSM nodes are then updated using the
Verlet algorithm. In updating the LBM system, we first es-
tablish which LBM nodes are solid and which are fluid, and
then obtain the location and the velocity of the LBM bound-
ary nodes. Next, we propagate the distribution function by
streaming fluid particles to their neighboring nodes whenever
these nodes are in the fluid domain and applying the bounce-
back boundary condition otherwise. Finally, we modify the
distribution functions at the LBM nodes to account for the
collision step. The bounce-back rule is implemented by using
a boundary node velocity that is obtained from the velocities
of the surrounding LSM nodes and returns the fluid forces
that are acting on the solid-fluid interface. Hence, the fluid
imposes stresses on the surrounding solid and the solid dic-
tates the velocity of the fluid at the solid-fluid interface.

FIG. 2. Flowchart depicting the coupling between the lattice
Boltzmann model and lattice spring model. A LSM iteration con-
sists of calculating the elastic forces and the solid-fluid stresses and
updating the positions, velocities and accelerations of the LSM
nodes using the Verlet algorithm. A LBM iteration consists of de-
termining the locations of fluid and solid nodes, propagating fluid
particles to neighboring nodes and having particles undergo colli-
sions at each node. The propagation step consists of two parts
sdashed boxesd: free streaming of fluid particles to their neighboring
nodes whenever these nodes are in the fluid domain and applying
the bounce-back boundary condition otherwise. The velocity at the
solid-fluid boundary is obtained from the Verlet algorithm and used
in the LBM bounce-back boundary condition. Fluid forces are then
obtained from this boundary condition and used as input for the
LSM update.
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In this section, we have shown that it is possible to couple
the LSM and the LBM, allowing for a dynamic interaction
between the elastic material and the confined fluid. Further-
more, the speed of sound in the solidscs=Î3k/MDxd can be
set relative to that in the fluidfcf =Î1/3sDx/Dtdg, allowing
us to vary the ratio between the speeds of sound in the solid
and fluid domain in order to meet the characteristics of an
actual experiment. In the next section, we validate the
coupled model and apply it to a study of the impact of a
fluid-filled, elastic shell on a hard wall and on an adhesive
surface.

III. RESULTS AND DISCUSSION

We investigate the dynamic behavior of an elastic, spheri-
cal shell that is filled with a Newtonian fluid. First, we con-
sider the “breathing-mode” oscillations of this system and
compare our results with analytical solutions. Next, we con-
sider the fate of a fluid-filled, elastic shell impacting a hard
surface and bouncing back in the opposite direction. Finally,
we simulate the impact and cohesion of a fluid-filled shell on
an adhesive wall in order to gain an understanding of how
the capsule-wall interactions affect the dynamical behavior.

A. Breathing-mode oscillations of a spherical shell

We validate our coupled model by comparing our results
for the oscillatory behavior of an elastic shell, bothin vacuo
and when filled with a Newtonian fluid, with theoretical pre-
dictionsssee Appendix Bd. Initially, we deform the shell such
that it is radially expanded; we then study the response of the
system by allowing the shell to relax toward its equilibrium,
undeformed state. Following the initial expansion, the sys-
tem will contract and expand in an oscillatory manner
s“breathing mode”d with a characteristic frequency. For an
elastic shellin vacuo these oscillations are undamped, and
the lowest frequency is given by

v0 = S 1

R
DF 2E

rss1 − ndG1/2F1 + OS h2

R2DG . s17d

Here,R is the middle radius of the shell,h its thickness,E its
Young’s modulus,rs its density, andn its Poisson’s ratio.
The leading term was first obtained by Lambf52g fsee also
Eqs.sB3d andsB25dg. Corrections to this term are small and
usually ignored; they are of ordersh/Rd2 and result in a
relative increase inv0 of only 1.6% for h/R=0.5 fas ob-
tained from Eq.sB23d for n=1/4g.

First, we test the LSM by calculating the breathing-mode
frequency of an elastic shellin vacuoas a function of the
shell’s thickness. The middle radius of the shellR is taken to
be 50 lattice sites, and we fix the Young’s modulus and den-
sity of the shell atE=67.5 andrs=11.25 sin lattice unitsd,
respectively. Remember that for our particular LSM,E
=5k/2Dx,rs=M / sDxd3, while the Poisson’s ration is re-
stricted to 1/4ssee Sec. II Bd. Hence, in the remainder of this
paper, we will use the physical variablesE andrs, instead of
the LSM variablesk andM. The speed of sound in the shell
is then given bycs=Î6E/5rs, consistent with Eq.sB3d for
n=1/4.

Figure 3 depicts the percentage deviation in the breathing-
mode frequencyv0 between the simulation result and that
obtained from the full analytical solutionsB23d as a function
of shell thicknessh. For a thin shell of two lattice spacings,
there is almost a 9% difference between the frequency of the
simulated oscillation and the theoretical prediction. How-
ever, as we increase the shell thickness, the simulation results
converge with the analytical solution. As the thickness of the
shell is increased, a greater number of LSM nodes are em-
ployed in describing the elastic properties of the shell, mini-
mizing discretization effects and, consequently, deviations
from the theoretical prediction. For a shell thickness of ten
lattice spacings, the simulation results are within 2% of the
analytical solution. Therefore, we choose this thickness in
the remainder of this paper.

Next, we test the coupled model by calculating the
breathing-mode frequency of an elastic shell that is filled
with a Newtonian fluid. We use the same numerical experi-
ment of an initially radially perturbed system. To aid in vi-
sualizing the results, we plot a snapshot of the system in Fig.
4, showing both the elastic shell and confined fluid as the
shell is expanding. For clarity, we only show the image for
half of the system. The shell is colored red and the velocity
of the fluid is represented by “cones” that point in the direc-
tion of fluid flow. The size of the cones depicts the magni-
tude of the velocity. Figure 4 clearly shows that the fluid
moves radially outward as the shell expands, with a velocity
that varies in the radial direction.

To quantify our observations on this system, we first mea-
sure the average radial displacement over all LSM nodes.
Figure 5 shows the relative average radial displacement as a
function of time snormalized with the period of oscillation
T0=2p /v0 for an elastic shellin vacuod. A positive value
corresponds to an expansion and a negative value to the con-
traction of the elastic shell. We useE=25/16 andrs=11.25
sin lattice unitsd, resulting in a ratiocs/cf =1/Î2 between the
speed of sound in the shell and that in the fluid. This ratio is
small enough to ensure that we only excite a single fre-
quency, in this case the lowest order breathing modessee
Fig. 6d. The fluid densityr f =1, whileR=50 andh=10, all in
lattice units.

FIG. 3. Comparison of our simulation results with the analytical
solution for the breathing-mode frequency of an elastic shellin
vacuo. The percentage deviation of our simulation resultsv from
the analytical solutionv0 are presented as a function of the shell
thicknessh. The circles mark the data points; the line is drawn as a
guide for the eye.
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In order to assess the effect of the enclosed fluid on the
oscillatory behavior of the elastic shell, we vary the bulk and
shear viscosities of the fluid. Variations of the shear viscosity
are found to have a negligible effect on the frequency of the
breathing-mode oscillations. We therefore fixh=1/6 sin lat-
tice unitsd, i.e., l=−1, ensuring instantaneous relaxation of
the shearstresses to local equilibriumfsee Eqs.s5d and s7dg.
The bulk viscosity, however, has an appreciable influence on
the oscillatory behavior of the elastic shell. This is to be
expected since the breathing-mode oscillations change the
total fluid volume enclosed by the shell, and the bulk viscos-
ity controls the effect of this volume change on the resultant
hydrostatic pressure inside the shell. We therefore focus on
the effects of varying bulk viscosity in Fig. 5. It is clear that
as the bulk viscosity is increased, the oscillations become
more strongly damped; this is particularly evident from the
diminishing amplitude forhB=40/6. Figure 5 also shows a
transition from weak damping to strong damping evident for

a bulk viscosity ofhB=40/6, for which the frequency of the
oscillations is affected by the value of the bulk viscosity,
with the frequency increasing with increasing bulk viscosity.

We then compare our simulation results for the breathing-
mode frequency with the analytical solution for an elastic
shell filled with an inviscid fluidssee Appendix Bd. Here, the
respective shear and bulk viscosities are taken to be 1/6 and
1/9 sin lattice unitsd, ensuring that we are in the weak-
damping limit, i.e., that the effect of the damping on the
frequency of the oscillation is negligiblessee Fig. 5d. This
makes comparing the frequencies with theoretical predic-
tions for an inviscid fluid meaningful. We then vary the
shell’s Young’s modulus to obtain results for a large range of
ratios between the speed of sound in the shell and that in the
fluid. All other shell and fluid properties are the same as
given in the empty shell example above. Figure 6 compares
the results from our simulations with the theoretical results
obtained from Eq.sB27d. The breathing-mode frequencies
are nondimensionalized with the middle radius of the shell
and the speed of sound in the fluid, and plotted as a function
of the ratio between the speeds of sound in the shell and the
fluid. Forcs/cf *2.5 we clearly excite the two lowest breath-
ing mode frequencies. Increasingcs/cf gradually increases
the ratio of the amplitude of the second mode relative to that
of the first mode, from 0.12 atcs/cf =2.45 to 2.8 atcs/cf
=3.87. Contribution of higher order modes was negligible
for the range ofcs/cf in Fig. 6. Hence, the simulations
clearly capture the lowest two branches of the breathing-
mode frequency spectrum. Figure 6 also shows the results
for the elastic shellin vacuo in the same nondimensional
units. It illustrates that the breathing-mode frequency spec-
trum for the elastic shell filled with an inviscid fluidfEq.
sB27dg roughly resembles that of a superposition of that for
an elastic shellin vacuofEq. sB23dg and that for an inviscid
fluid in a rigid cavity fEq. sB30dg.

Figure 6 shows that the simulation results are in good
agreement with the theoretical predictions, validating our
technique. As a demonstration, we now turn our attention to
investigating the collision between this fluid-filled, elastic
shell, and a hard wall.

FIG. 4. sColor onlined A fluid-filled shell undergoing breathing
mode oscillations. The shell is colored red and the velocity of the
fluid is depicted by blue cones whose size and orientation depict the
magnitude and direction of the velocity field.

FIG. 5. The relative average radial displacement as a function of
time for fluid-filled shells oscillating at their breathing mode fre-
quency and containing fluids with varying bulk viscosities. Here,
time is normalized with the period of oscillation of an elastic shell
in vacuo.

FIG. 6. The dimensionless breathing-mode frequency as a func-
tion of the ratio between the speeds of sound in the solid and the
fluid. Here, cf is fixed andcs is varied by varying the Young’s
modulus of the elastic shell. Simulation results for both shellsin
vacuo ssquaresd and fluid-filled shellsscirclesd are compared with
their theoretical predictionsslinesd.
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B. Impact of a fluid-filled spherical shell on a hard wall

Here, we consider the impact of a fluid-filled shell on a
hard wall in theyz plane, which we introduce through the
use of a repulsive exponential potential that acts upon the
LSM nodes. In particular, we mimic a hard wall by imposing
a force on the LSM nodes of the form

Fsxd = 5expS− srx − rx,wd
s

D, rx , − 56,

0, rx . − 56.
6 s18d

Here rx is the x coordinate of a LSM node,rx,w=−58, and
s=0.2;s is a measure of the length scale of the sphere-wall
interaction and is chosen to be much smaller than that of the
lattice spacingswhich is unityd.

The dynamic behavior of a fluid-filled elastic shell as it
impacts a hard wall is depicted in Fig. 7f53g. The surface of

the shell is colored to represent the elastic material’s
“equivalent strain,” which is defined asueq=Î2

3uijuij , with uij

being the strain tensor. The equivalent strain provides an
isotropic scalar measure of the strain level. As indicated by
the color bar in the figure, the regions that are most deformed
are marked in red. The velocity of the fluid is again repre-
sented as cones that point in the direction of fluid flow and
whose size depict the magnitude of the velocity. The elastic
shell and the enclosed fluid are initially assigned the same
velocity vx=−v0 as the capsule moves toward the wall and
the system travels unperturbed until it reaches the wall. The
magnitude of the initial velocityv0=0.02 is roughly an order
of magnitude smaller than the speed of sound in the fluid.
Unless specifically mentioned otherwise, we useE
=25/16,rs=11.25 sgiving cs/cf =1/Î2d, R=50,h=10,r f
=1,h=1/6, andhB=1/9 sall in lattice unitsd. Figure 7sad
depicts the shell as it reaches the hard wall. The shell de-

FIG. 7. sColord Time frames showing the impact of a fluid-filled elastic shell on a hard wall att=200 fsad, top, leftg, t=600 fsbd, top,
rightg, andt=1000fscd, bottomg. The velocities in the fluid are depicted as red cones whose size and orientation represent the magnitude and
direction of the velocity field. The size of the cones are scaled by a factor of 200 insad andscd, and 1500 insbd in order for the cones to be
visible. The shell colors are a measure for the equivalent strain in the solid domain.
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forms as it impacts the wall due to the strong repulsive force.
It becomes compressed at the region of impactsred part of
the shell surfaced and appears slightly flattened. The velocity
of the shell in the region of impact is significantly decreased,
while the velocity in the rest of the system is still close to the
initial velocity.

Figure 7sbd depicts the shell at its maximum deformation,
just as it starts to rebound off the hard wall. The kinetic
energy of the moving system has largely been converted into
elastic energy through the deformation of the shell. The re-
gions that are most deformed are represented by red surfaces.
For the selected parameters, the shell only appears to be
significantly deformed in the region of impact. However, the
rest of the shell is also deformed as it “bends” and becomes
“squashed” or compressed as a result of the impact. In fact,
the first regions that begin to recover are those farthest away
from the region of impactsas indicated by the reversed ve-
locity cones on the opposite side of the impact regiond, and
those on the sidessas indicated by the inwardly pointing
velocity conesd.

The elastic energy stored in the deformed shell is trans-
ferred to kinetic energy as the elastic shell regains its original
shape. Figure 7scd shows the system just before the shell
leaves the surface. The only region of noticeable deformation
is the region of the shell that is still in contact with the hard
wall. The rest of the shell has already regained its original
shape. The velocity in the fluid is near zero near the region of
the shell still in contact with the wall, but is directed away
from the wall in the rest of the shellswith nearly the same
magnitude as the velocity before impactd.

In order to better understand this dynamic behavior, we
first return to the simpler case of an elastic shellin vacuoand
consider the effects of varying the Young’s modulus on the
shell’s impact with a hard wall. Figure 8 shows the average
velocity of the elastic shell, normalized withv0, as a function
of time, normalized withR/cf. Increasing the Young’s modu-
lus has the effect of decreasing the amount of deformation in
the elastic shell and, therefore, decreases the time it needs to
recover its original shape. This can be seen in Fig. 8 from the
time it takes for the average velocity to change from propa-
gating toward the wallsnegative velocityd to propagating

away from the wallspositive velocityd. It should be noted
that the magnitude of the shell’s velocity as it travels away
from the wall is slightly lower than that of its initial velocity.
This is due to energy being transferred upon impact to elastic
deformations that propagate around the spherical shell; the
shell effectively “rings” as it travels away from the wall.sIn
these simulations, these internal vibrations are undamped.d

With this insight into the behavior of an empty elastic
shell, we return to the case of the fluid-filled, elastic shell to
investigate the effects that the fluid properties have on the
impact behavior of the system. As the shell impacts the hard
wall, stresses act on the fluid in the region of impact, and
these stresses are transferred to other regions of the fluid and
the shell. The deformations appear to be relatively volume
conserving for the parameters considered here and, as such,
we expect little influence of the bulk viscosity on the impact
behavior of the system. However, we expect significant gra-
dients in the fluid’s velocity field as the shell comes to a halt,
and ultimately rebounds in the opposite direction. Hence, we
anticipate a significant influence of the shear viscosity on the
collision process. We varied both the shear and bulk viscosi-
ties, and found, indeed, that varying the bulk viscosity has a
negligible effect compared to that of varying the shear vis-
cosity. Hence, we fix the bulk viscosity to 1/9sin lattice
unitsd, i.e., lB=−1, ensuring instantaneous relaxation of the
bulk-stresses to local equilibriumfsee Eqs.s5d and s7dg. We
then vary the shear viscosity, keeping all other variables
fixed at the same values as for the empty shell simulations.
Figure 9 shows the average velocity of the shell as a function
of time, for shells containing fluids of different shear viscosi-
ties. As expected, increasing the shear viscosity increases the
damping of the shell dynamics. In particular, the velocity of
the shell decreases more rapidly, and the shell rebounds from
the wall with a significantly lower velocity. The initial ki-
netic energy of the system is no longer primarily stored as
elastic energy, but is now significantly dissipated by the
fluid.

We have shown how the mechanical properties of the
elastic shell and the viscous behavior of the enclosed fluid
influence the dynamics of a fluid-filled shell impacting a hard
wall. As noted in the Introduction, the binding of microcap-

FIG. 8. The average velocity in an elastic shellin vacuoas a
function of time as it impacts a hard wall, for shells of varying
Young’s modulus. The velocities are normalized withv0 and time
with R/cf.

FIG. 9. The average velocity in an elastic shellin vacuoas a
function of time as it impacts a hard wall, for shells containing
fluids of varying shear viscosity. The velocities are normalized with
v0 and time withR/cf.
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sules onto surfaces can be essential to their functionality
f13g; consequently, in the next section, we consider the im-
pact of a fluid-filled elastic shell on an adhesive wall.

C. Impact of fluid-filled spherical shell on an adhesive wall

In order to mimic the “tackiness” of an adhesive wall in
the yz-plane, we replace the exponential force used in the
previous section to simulate a hard wall with a velocity-
dependent force that can be either repulsive or attractive. For
convenience we use a force that is defined through a poten-
tial

Usrxd =54eFS s

rx − rx,w
D12

− S s

rx − rx,w
D6G , rx , rx,c ∨ vx . 0,

0, rx . rx,c ∧ vx , 0.
6

s19d

Hererx is thex coordinate of a LSM node, andvx its velocity
in the x direction; rx,w=−58 is thex coordinate of the wall

ands ande control the range and magnitude of the interac-
tion. Note that the force changes sign at some valuerx=rx,c,
and that it is attractive forrx, rx,c and repulsive forrx
. rx,c. Equations19d implies that as a LSM node approaches
the wall, it experiences a purely repulsive interaction mim-
icking a hard wall; however, as it moves away from the wall,
it experiences an attractive potential. In this manner, the shell
experiences “tackiness” as it impacts the adhesive surface.
We have sets=0.8, fixing the range of the repulsive part of
the potentialsrx,c−rx,wd=s21/6<1.

Figure 10 captures the dynamic behavior of a fluid-filled,
elastic shell impacting the adhesive wallf53g. Unless specifi-
cally mentioned otherwise, we use in this sectionE
=25/4,rs=11.25 sgiving cs/cf =Î2d, R=50,h=10,r f =1,h
=1/6,hB=1/9, and v0=0.02 sall in lattice unitsd. Figure
10sad shows the shell as it impacts the wall. The velocity of
the fluid is directed toward the wall and the deformation of
the shell is localized in the region of impact. Similar to the
impact of a fluid-filled shell on a hard wall, the shell deforms

FIG. 10. sColord Time frames showing the impact of a fluid-filled elastic shell on an adhesive wall att=300 fsad, top, leftg, t=600 fsbd,
top, rightg, andt=900 fscd, bottomg. The velocities in the fluid are depicted as red cones whose size and orientation represent the magnitude
and direction of the velocity field. The size of the cones are scaled by a factor of 500 in order for the cones to be visible.
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upon impact, after which it comes to a halt. As the elastic
energy stored upon impact is released in the form of kinetic
energy, the shell begins to move away from the wall. This is
shown in Fig. 10sbd, where the system starts to move away
from the wall in the regions that lie opposite to the area of
impact. In the region of impact, however, the velocity re-
mains essentially zero as the shell adheres to the wall. Hence,
the shell stretches out, trying to pull away from the wall, but
remains “stuck” if the adhesive force is large enoughsas is
the case in Fig. 10d. The elastic energy in the shell increases
as the nonadhered portions become elongated away from the
wall, pulling the shell back toward the wallfsee Fig. 10scdg.
The system then starts to oscillate between these two states;
either squashed against the wall or elongated away from it.

First, we study the effect of varying the interaction
strength between the fluid-filled shell and the adhesive wall.
In particular, the value of the interaction parametere in Eq.
s19d, is varied from 0.2 to 1.0sin lattice unitsd. Figure 11
shows the average velocity of the shell as a function of time.
Whether the shell rebounds off the wall, and how, is affected
by the attractive interaction with the wall. Fore=0.2, the
adhesive force slows down the shell as it moves away from
the wall, but the attraction is too small to bind the shell to the
wall. For higher values ofe, the adhesion is strong enough to
bind the particle to the wall, and the shell starts to oscillate
between a “squashed” state and an “elongated” state in a
manner close to that depicted in Fig. 10. As the interaction
strength is increased, two things occur: the amplitude of the
oscillations in the averaged velocity decreases, and their fre-
quency increases. The increase in interaction strength in-
creases the area of adhesion, thus limiting the regions of the
shell that are free to vibrate. The greater the area of a shell
that is adhered to the surface, the higher the frequency of
oscillation. This is consistent with Eq.s17d, which does in
fact indicate that smaller shells oscillate at a higher fre-
quency.

A similar phenomenon occurs when the shell impacts the
adhesive wall at different initial velocities. Figure 12 shows
the average velocity, normalized withcf, as a function of
time, for shells that impact the adhesive wall with initial
velocitiesv0 of 0.01, 0.02, and 0.03. Here, we fixe=1. The

most notable feature is that the frequency of the oscillations
of the adhered shell increases as the speed with which the
shell impacts the adhesive wall is increased. The shell under-
goes greater deformation as it impacts the wall at a higher
speed, resulting again in a larger region of the shell being
adhered to the wall, and increasing the frequency of the os-
cillations.

Next, we investigate the effects of varying the Young’s
modulus of the shell on the dynamics of the fluid-filled shell
impacting an adhesive wall. Figure 13 shows the average
velocity as a function of time. Similar to Fig. 8, an increase
in the Young’s modulus generally results in a decrease in the
amount of deformation and hence a decrease in the area of
contact, enabling the shell to regain its original shape in less
time. Figure 13 shows that when the adhesion is strong
enough, the shell adheres to the wall and starts to oscillate
with a frequency that increases with increasing Young’s
modulus. This frequency dependence on Young’s modulus is
qualitatively similar to that of the breathing mode vibrations
of an elastic shellin vacuoas given by Eq.s17d.

Finally, Fig. 14 shows the effects of varying the shear
viscosity of the enclosed fluid. In particular, we plot the av-
erage velocity of the shell as a function of time for shells

FIG. 11. The average velocity in a fluid-filled elastic shell as a
function of time as it impacts an adhesive wall of varying interac-
tion strength. The velocities are normalized withv0 and time with
R/cf.

FIG. 12. The average velocity in a fluid-filled elastic shell as a
function of time as it impacts an adhesive wall at varying velocity.
The velocities are normalized withcf and time withR/cf.

FIG. 13. The average velocity in a fluid-filled elastic shell as a
function of time as it impacts an adhesive wall, for shells of varying
Young’s modulus. The velocities are normalized withv0 and time
with R/cf.
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containing fluids with shear viscositiesh=7/6,31/6, and
127/6. As the shear viscosity is increased, the oscillations
become increasingly damped, in a way that is qualitatively
similar to the situation of a fluid-filled, elastic shell impact-
ing on a hard wallssee Fig. 9d.

IV. CONCLUSIONS

In summary, by coupling the lattice spring modelsLSMd
of elastic mechanics and the lattice Boltzmann method
sLBM d for fluid dynamics, we have developed a flexible,
robust, and relatively simple method for solving fluid-
structure interactions. In this paper, we demonstrated the va-
lidity of this approach by simulating the breathing mode os-
cillations of an elastic, fluid-filled spherical shell and
comparing the results with analytical solutions. We find
good, quantitative agreement between the simulation and
analytical results. Furthermore, we demonstrated the utility
of the approach by investigating the impact of a fluid-filled
shell on two types of surfaces: hardspurely repulsived and
adhesive. We showed that for a range of operating condi-
tions, the resultant dynamic behavior is sensitive to both the
elastic properties of the shell and the viscous properties of
the enclosed fluid. A fundamental understanding of the dy-
namics of fluid-filled shells is particularly important in the
design of effective microcapsules for pharmaceutical or other
commercial applications. Our studies reveal that the physical
properties of both the outer casing and the inner fluid can
play a role in controlling the binding of these capsules to the
specified surfaces.

In future studies, we will exploit the capabilities of this
approach to examine other types of problems that require an
efficient method for simulating fluid-structure interactions. In
particular, we will consider the flow of fluids in compliant
pipes or tubes. Through the LSM, we can introduce mechani-
cal heterogeneities along the length of the pipe by making
some portions of the pipe stiffer than others, or in the radial
direction by making the tube stiffer as one moves from the
inner to the outer surface. Furthermore, through the LBM,
we can consider not only single-component fluids, but also

multicomponent liquids or liquid-gas mixtures. Modeling the
flow of complex fluids through laterally or radially heteroge-
neous pipes is important for various scientific and engineer-
ing applications. If the tubes are constructed to represent
biological systems, we can use the simulations to probe
blood flow in capillaries or air flow through compartments in
the lungs. Thus, the integrated LBM-LSM model opens up
the possibility of accurately and efficiently capturing dy-
namic interactions between fluid flow and structural interac-
tions in a broad variety of systems.
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APPENDIX A: THE LBM COLLISION OPERATOR

The time evolution of the particle distribution function is
governed by the discretized Boltzmann equation, where the
collision operatorViffsr ,tdg, accounts for the change inf i

due to instantaneous “molecular” collisions at the lattice
nodesfsee Eq.s1dg. A computationally useful form for the
collision operator can be constructed by linearizing about the
local equilibrium distribution functionf54g

Viffsr ,tdg = o
j

Li jff isr ,td − f i
eqsr ,tdg, sA1d

whereLi j are the matrix elements of the linearized collision
operatorL. This linearized collision operator must satisfy the
following eigenvalue equations:

o
i

Li j = 0,

o
i

eiLi j = 0,

o
i

eieiLi j = lejej ,

o
i

ei
2Li j = lBej

2, sA2d

whereeiei, indicates the deviatoric part ofeiei. The first two
equations follow from conservation of mass and momentum
fsee Eq.s1dg, and the last two equations describe the isotro-
pic relaxation of the viscous stress tensor; the eigenvaluesl
andlB are related to the shear and bulk viscositiesfsee Eq.
s7dg, and must lie in the ranges−2,0d. EquationsA1d ac-
counts for ten of the eigenvectors ofL ssix in two dimen-
sionsd. The remaining ninesthree in two dimensionsd modes
are higher-order eigenvectors ofL that are not relevant to the
Navier-Stokes equations, but which do affect the boundary
conditions at the solid-fluid interfaces. In general the eigen-
values of these kinetic modes are set to −1 , which both
simplifies the simulation and ensures a rapid relaxation of the
nonhydrodynamic modesf26g.

The collision operator can be further simplified by taking
a single eigenvalue for both the viscous and nonhydrody-
namic kinetic modesf55,56g. This ssingled exponential relax-

FIG. 14. The average velocity in a fluid-filled elastic shell as a
function of time as it impacts an adhesive wall, for shells containing
fluids of varying shear viscosity. The velocities are normalized with
v0 and time withR/cf.
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ation time sERTd approximation,Vi =−sf i − f i
eqd /t, has be-

come the most popular form for the collision operator
because of its simplicity and computational efficiency. How-
ever, the absence of a clear time scale separation between the
hydrodynamic and nonhydrodynamic modes reduces the nu-
merical stability f40,57g, and can sometimes cause signifi-
cant errors at solid-fluid boundariesf28g. Furthermore, it
does not allow independent variation of the bulk and shear
viscosities. Thus we employ the more flexible collision op-
erator of Eq.sA1d.

APPENDIX B: BREATHING-MODE OSCILLATIONS
OF A SPHERICAL SHELL

Here we summarize the theoretical analysis of the oscil-
latory behavior of an elastic shell, bothin vacuoand when
filled with an inviscid fluid. We limit ourselves to the re-
sponse of the system after an initial radial expansion. Fol-
lowing the initial expansion, the system will contract and
expand in an oscillatory manners“breathing mode”d with a
characteristic frequency. Because of the symmetry of the sys-
tem the breathing mode is completely described by the radial
component of the displacement vectorursr ,td in the shell,
and the radial component of the enclosed fluid velocity
vrsr ,td, which furthermore only depend on the radial coordi-
nater and timet. We denote the radius of the outer surface of
the shell witha, that of the inner surface withb, while R
=sa+bd /2 andh=a−b.

The displacement vectorusr ,td in the shell is determined
by the equation of motion for an isotropic elastic medium
se.g., Ref.f58gd,

rs
]2u

]t2
=

E

2s1 + nd
=2u +

E

2s1 + nds1 − 2nd
= = ·u,

sB1d

with E the shell’s Young’s modulus,rs its density, andn the
Poisson’s ratio. Hence, forusr ,td=ursr ,tdr̂ , with r̂ the unit
vector in the radial direction, Eq.sB1d for the elastic shell
reduces to

1

cs
2

]2ur

]t2
=

]

]r

1

r2

]

]r
r2ur , sB2d

with cs the longitudinal speed of sound in the shell

cs =Î Es1 − nd
rss1 + nds1 − 2nd

. sB3d

The fluid velocityvsr ,td inside the shell is described by
the equation of motion for an inviscid fluidse.g., Ref.f59gd,

r f
]v

]t
+ r fv · = v = − = p, sB4d

with r f the fluid density andp its pressure. Forvsr ,td
=vrsr ,tdr̂ , and consequentlyp=psr ,td this reduces to

r f
]vr

]t
+

1

2
r f

]vr
2

]r
= −

]p

]r
. sB5d

If we assume small amplitude oscillations, we can neglect
the quadratic term invr, leaving

r f
]vr

]t
= −

]p

]r
. sB6d

Furthermore, as long as the compression is smallsas is the
case for small amplitude oscillationsd

]p/]t = − k = ·v = − k
1

r2

]

]r
r2vr , sB7d

with k the bulk modulus. Differentiating both sides of Eq.
sB7d with respect to time and using Eq.sB6d, we then arrive
at

1

cf
2

]2p

]t2
=

1

r2

]

]r
r2]p

]r
sB8d

which is an equation for undamped, longitudinal compres-
sional waves, withcf =Îk /r f the speed of sound in the fluid.

The equations of motion can be solved by seeking solu-
tions of harmonic waves, i.e., by assuming

ursr,td = Usrdeivt, vrsr,td = Vsrdeivt, psr,td = Psrdeivt.

sB9d

EquationssB2d and sB8d then reduce to

d

dr

1

r2

d

dr
r2U +

v2

cs
2 U = 0, sB10d

1

r2

d

dr
r2dP

dr
+

v2

cf
2 P = 0, sB11d

with the general solutions

Usrd = Aj1svr/csd + By1svr/csd, sB12d

Psrd = Cj0svr/cfd + Dy0svr/cfd. sB13d

Here, jnsxd andynsxd are thenth order spherical Bessel func-
tions of the first and second kind, and the coefficients
A,B,C, andD are integration constants, that have to be ob-
tained from the appropriate boundary conditions at the inner
and outer surface of the shell.

For small deformations, the stress tensors in the shell is
related to the displacement vectorusr ,td according tose.g.,
f58gd

s = ms=u + = u†d + l = ·uI , sB14d

with I the unit tensor andm andl the Lamé coefficients

m =
E

2s1 + nd
, l =

En

s1 + nds1 − 2nd
. sB15d
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Using spherical symmetry,usr ,td=ursr ,tdr̂ , this gives

srr = sl + 2md
]ur

]r
+ 2l

ur

r
. sB16d

Balancing the radial stress with the pressure at the inner and
outer surface of the shell givessrrsr ,td=−psr ,td for r =a and
r =b. Hence, the boundary conditions for the stress are

Usl + 2md
dU

dr
U

r
+ 2l

Usrd
r

= − Psrd, r = a,r = b.

sB17d

These equations are sufficient to solve for the displacement
vector of an elastic shellin vacuo fin which casePsad
=Psbd=0g.

For the fluid filled shell we need two more boundary con-
ditions. The first is obtained by requiring the pressure to be
finite at r =0, givingD=0. The second is obtained by requir-
ing continuity of the normal velocity across the inner surface
of the shell, i.e.,

vrsb,td = U ]ur

]t
U

r=b

. sB18d

Using Eqs.sB6d, sB7d, andsB9d, this reduces to

Usbd =
1

r fv
2UdP

dr
U

r=b
. sB19d

1. An elastic shellin vacuo

First, we solve for the breathing mode oscillations in an
elastic shellin vacuo. Substituting Eq.sB12d in Eq. sB17d
and usingPsad=0 gives

Afsa j0sad − j1sadg + Bfsay0sad − y1sadg = 0. sB20d

Here,a=va/cs, the constants is defined as

s=
l + 2m

4m
=

1 − n

2s1 − 2nd
, sB21d

and we used the fact thatdfnsxd /dx= fn−1sxd−sn+1dfnsxd /x,
with fn either jn or yn. The boundary condition atr =b leads
to an similar expression by substitutingb=vb/cs for a in
Eq. sB20d. EliminatingA andB then results in

say0sad − y1sad
sa j0sad − j1sad

=
sby0sbd − y1sbd
sb j0sbd − j1sbd

, sB22d

which can be simplified tof60g

tansVĥd

Vĥ
=

1 + sV2âb̂

V2âb̂ + ssV2â2 − 1dssV2b̂2 − 1d
. sB23d

Here, ĥ=h/R,â=a/R,b̂=b/R, and the dimensionless fre-
quencyV is defined as

V =
vR

cs
. sB24d

EquationsB23d can be solved numerically forV. It has a

single solutionV0 in the limit ĥ→0,

V0 =Î2s1 + nds1 − 2nd
s1 − nd2 , sB25d

which is Lamb’s breathing-mode frequency for an infinitely
thin elastic shellin vacuof52g. At finite h, there is a hierar-
chy of solutions; the lowest frequency being a generalization
of Lamb’s breathing-mode frequency for shells with a finite
thickness. The next higher frequency, which is proportional
to R/h, is a mode where the shell’s middle surface remains
stationary in time and the shell itself becomes thinnerscom-
pressedd and thickersexpandedd in an oscillatory manner.

2. An elastic shell filled with an inviscid fluid

Next, we solve for the breathing mode oscillations in an
elastic shell filled with an inviscid fluid. The general solution
is given by Eqs.sB12d andsB13d, whereA,B, andC have to
be obtained from Eqs.sB17d and sB19d sremember thatD
=0d. Since,Psad=0, as for the elastic shellin vacuo, the first
boundary condition is identical to that of the empty shellfEq.
sB20dg. Using Psbd=Cj0svb/cfd, the second boundary con-
dition is obtained from Eq.sB20d by substitutingb=vb/cs
for a, and changing the right-hand side to
−sb/4mdCj0svb/cfd. With Eqs. sB12d and sB13d, and
dj0sxd /dx=−j1sxd, the third boundary conditionsB19d re-
duces to

Aj1sbd + By1sbd = −
C

vr fcf
j1Svb

cf
D . sB26d

Eliminating A,B, andC and simplifying the result using the
same notation as in Eq.sB23d gives

fV2âb̂ + ssV2â2 − 1dssV2b̂2 − 1dgtansVĥd − s1 + sV2âb̂dVĥ

=
sVb̂

gf

j0sgVb̂d

j1sgVb̂d
fssV2â2 − V2âb̂ − 1dtansVĥd + Vĥ

+ sV3â2b̂g , sB27d

which can be solved numerically for given values ofR,h,n,
and

g =
cs

cf
, f =

rs

r f
. sB28d

Expanding Eq.sB27d in powers ofh and keeping only the
lowest order gives

F1 −
r fR

rsh

j0sgVd
gV j1sgVdGS V

V0
D2

= 1, sB29d
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with V0 given in Eq.sB25d. This result is identical to that
obtained by Rand and DiMaggiof61g and Engin and
Liu f62g for n=0, and reduces to that obtained from mem-
brane theory forn=1/2 f63g. Note that for r f /rs→0,

Eq. sB29d reduces toV=V0, the correct result for an

infinitely thin elastic shellin vacuo. Forg→`, with cf finite,

it degenerates to

j1Svb

cf
D = 0, sB30d

which is the frequency equation for radial oscillations of an
inviscid fluid inside a rigid spherical cavity with radiusb.
The same result could have been obtained directly, by solv-
ing Eq. sB11d, subject to the boundary conditionsB19d for
Usbd=0.

f1g K. Perktold and G. Rappitsch, J. Biomech.28, 845 s1995d.
f2g J. B. Grotberg and O. E. Jensen, Annu. Rev. Fluid Mech.36,

121 s2004d.
f3g R. H. Scanlan and R. Rosenbaum,Introduction to the Study of

Aircraft Vibration and FluttersThe MacMillan Company, New
York, 1951d.

f4g Bridge Aerodynamics, edited by A. Larsen and S. Esdahl
sBalkema, Rotterdam, 1998d.

f5g M. P. Rast, Int. J. Numer. Methods Fluids19, 1115s1994d.
f6g J. M. T. Penrose and C. J. Staples, Int. J. Numer. Methods

Fluids 40, 467 s2002d.
f7g P. R. F. Teixeira and A. M. Awruch, Comput. Fluids34, 249

s2005d, and references therein.
f8g A. A. Gusev, Phys. Rev. Lett.93, 034302s2004d.
f9g S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech.30, 329

s1998d.
f10g W. T. Ashurst and W. G. Hoover, Phys. Rev. B14, 1465

s1976d.
f11g G. A. Buxton, C. M. Care, and D. J. Cleaver, Modell. Simul.

Mater. Sci. Eng.9, 485 s2001d.
f12g T. Kato, K. Sato, R. Sasaki, H. Kakinuma, and M. Moriyama,

Cancer Chemother. Pharmacol.37, 289 s1996d.
f13g N. Elsner, F. Dubreuil, and A. Fery, Phys. Rev. E69, 031802

s2004d.
f14g G. S. O’Brien and C. J. Bean, J. Geophys. Res.109, B09301

s2004d.
f15g X. Shan and H. Chen, Phys. Rev. E47, 1815s1993d.
f16g M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev.

Lett. 75, 830 s1995d.
f17g L.-S. Luo and S. S. Girimaji, Phys. Rev. E66, 035301sFd

s2002d.
f18g A. Lamura, G. Gonnella, and J. M. Yeomans, Europhys. Lett.

45, 314 s1999d.
f19g K. Good, O. Kuksenok, G. A. Buxton, V. V. Ginzburg, and A.

C. Balazs, J. Chem. Phys.121, 6052s2004d.
f20g M. M. Dupin, I. Halliday, and C. M. Care, J. Phys. A36, 8517

s2003d.
f21g A. Cancelliere, C. Chang, E. Foti, D. H. Rothman, and S.

Succi, Phys. Fluids A2, 2085s1990d.
f22g R. Verberg and A. J. C. Ladd, Phys. Rev. E65, 056311s2002d.
f23g P. Szymczak and A. J. C. Ladd Geophys. Res. Lett.31,

L23606 s2004d.
f24g M. Krafczyk, M. Cerrolaza, M. Schulz, and E. Rank, J.

Biomech. 31, 453 s1998d.
f25g M. Hirabayashi, M. Ohta, D. A. Rufenacht, and B. Chopard,

Phys. Rev. E68, 021918s2003d.
f26g A. J. C. Ladd, J. Fluid Mech.271, 285 s1994d; 271, 311,

s1994d.
f27g C. K. Aidun, Y. Lu, and E.-J. Ding, J. Fluid Mech.373, 287

s1998d.
f28g A. J. C. Ladd and R. Verberg, J. Stat. Phys.104, 1191s2001d.
f29g R. Verberg and D. L. Kochsunpublishedd.
f30g H. Xu, R. Verberg, D. L. Koch, and M. Y. Lougesunpub-

lishedd.
f31g M. Krafczyk, J. Tolke, E. Rank, and M. Sculz, Comput. Struct.

79, 2031s2001d.
f32g H. Fang, Z. Wang, Z. Lin, and M. Liu, Phys. Rev. E65,

051925s2002d.
f33g L. Monette and M. P. Anderson, Modell. Simul. Mater. Sci.

Eng. 2, 53 s1994d.
f34g G. A. Buxton and A. C. Balazs, J. Chem. Phys.117, 7649

s2002d.
f35g G. A. Buxton and A. C. Balazs, Phys. Rev. E67, 031802

s2003d.
f36g L. Monette and M. P. Anderson, Scr. Metall. Mater.28, 1095

s1993d.
f37g M. P. Anderson, L. Monette, and G. S. Grest, J. Appl. Phys.

75, 1155s1994d.
f38g G. A. Buxton and A. C. Balazs, Mol. Simul.30, 249 s2004d.
f39g U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y.

Pomeau, and J.-P. Rivet, Complex Syst.1, 649 s1987d.
f40g D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and

L.-S. Luo, Philos. Trans. R. Soc. London, Ser. A360, 437
s2002d, and references therein.

f41g X. He and L.-S. Luo, Phys. Rev. E55, R6333 s1997d; 56,
6811 s1997d.

f42g G. N. Hassold and D. J. Srolovitz, Phys. Rev. B39, 9273
s1989d.

f43g A. J. C. Ladd, J. H. Kinney, and T. M. Breunig, Phys. Rev. E
55, 3271s1997d.

f44g A. J. C. Ladd and J. H. Kinney, Physica A240, 349 s1997d.
f45g L. M. Schwartz, S. Feng, M. F. Thorpe, and P. N. Sen, Phys.

Rev. B 32, 4607s1985d.
f46g S. Arbabi and M. Sahimi, Phys. Rev. B41, 772 s1990d.
f47g M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys.

97, 1990s1992d.
f48g N.-Q. Nguyen and A. J. C. Ladd, Phys. Rev. E66, 046708

s2002d.
f49g M. Bouzidi, M. Firdaouss, and P. Lallemand, Phys. Fluids13,

3452 s2001d.
f50g An alternative approach to improving the local nonequilibrium

stress would be to do a few LBM iterations with “frozen”
values for the fluid density and velocity.

f51g I. Ginzburg and D. d’Humières, Phys. Rev. E68, 066614

NEWTONIAN FLUID MEETS AN ELASTIC SOLID:… PHYSICAL REVIEW E 71, 056707s2005d

056707-15



s2003d, and references therein.
f52g H. Lamb, Proc. London Math. Soc.14, 50 s1882d.
f53g In order to obtain the images of the deformed elastic shell, we

take information from the LSM lattice and map it onto a
spherical shell surface. In particular, we consider an unper-
turbed shell surface, whose dimensions correspond to the un-
perturbed LSM lattice. We then map the values for both the
nodal displacements and equivalent strain from the original
unperturbed LSM lattice to the unperturbed shell surface using
a simple weighted averaging technique. The shell surface is
then displaced according these weighted displacementssob-
tained from the LSM latticed in order to obtain the deformed
shell surface. Finally, the shell surface is colored according to
the weighted values of the equivalent strain from the LSM
lattice.

f54g F. J. Higuera, S. Succi, and R. Benzi, Europhys. Lett.9, 345
s1989d.

f55g Y. H. Qian, D. d’Humières, and P. Lallemand, Europhys. Lett.
17, 479 s1992d.

f56g H. Chen, S. Chen, and W. H. Matthaeus, Phys. Rev. A45,
R5339s1992d.

f57g P. Lallemand and L.-S. Luo, Phys. Rev. E61, 6546s2000d.
f58g L. D. Landau and E. M. Lifshitz,Theory of ElasticitysPerga-

mon Press, London, 1959d.
f59g L. D. Landau and E. M. Lifshitz,Fluid MechanicssPergamon

Press, London, 1959d.
f60g A. H. Shah, C. V. Ramkrishnan, and S. K. Datta, J. Appl.

Mech. 36, 440 s1969d.
f61g R. Rand and F. DiMaggio, J. Acoust. Soc. Am.42, 1278

s1967d.
f62g A. E. Engin and Y. K. Liu, J. Biomech.3, 11 s1970d.
f63g P. M. Morse and H. Feshbach,Methods of Theoretical Physics

sMcGraw-Hill, New York, 1953d, Pt.II.

BUXTON et al. PHYSICAL REVIEW E 71, 056707s2005d

056707-16


