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Newtonian fluid meets an elastic solid: Coupling lattice Boltzmann and lattice-spring models
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We integrate the lattice Boltzmann modéBM) and lattice spring mode€lLSM) to capture the coupling
between a compliant bounding surface and the hydrodynamic response of an enclosed fluid. We focus on an
elastic, spherical shell filled with a Newtonian fluid where no-slip boundary conditions induce the interaction.
We calculate the “breathing mode” oscillations for this system and find good agreement with analytical
solutions. Furthermore, we simulate the impact of the fluid-filled, elastic shell on a hard wall and on an
adhesive surface. Understanding the dynamics of fluid-filled shells, especially near adhesive surfaces, can be
particularly important in the design of microcapsules for pharmaceutical and other technological applications.
Our studies reveal that the binding of these capsules to specific surfaces can be sensitive to the physical
properties of both the outer shell and the enclosed fluid. The integrated LBM-LSM methodology opens up the
possibility of accurately and efficiently capturing the dynamic coupling between fluid flow and a compliant
bounding surface in a broad variety of systems.
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[. INTRODUCTION particularly popular as it allows one to choose the most effi-
&ient and applicable codes for both the fluid and solid do-

There are many systems of scientific importance where™~" . :
both the hydrodynamic response of a fluid and the mechanfains separately, thereby taking advantage of a wide range
f commercial packages that solve for either the structural

cal response of an adjacent structure are dynamicall% hani he fluid d .
coupled. For example, in the biomechanics of either bloodM€chanics or the fluid dynamics. . . .
Recently, however, lattice-based simulation techniques

flow in the cardiovascular system, or air flow in the respira- d e it fives t tional
tory system, the compliant nature of the vessels can have have emerged as promising altérnatives to more conventiona
Qumerlcal scheme$8,9]. Unlike conventional numerical

significant effect on the flow rate and wall shear stresse . . X : . e
[1,2]. Such fluid-flow—boundary interactions are commonlySchemesmeaning methods involving a direct discretization
: of the continuum equatiofsthese lattice models simulate

e e Underng processes tal gue rse o he spproprt
Rontinuum” behavior. In particular, the lattice Boltzmann

optimize the design of aeroelastic aircraft wings, which Mayodel (LBM) incorporates the mesoscopic physics of fluid

experience “flutter(3], or large civil engineering structures, «,icles” propagating and colliding on a simple lattice such
which may undergo wind-induced oscillations and experi-ihai the averaged, long-wavelength properties of the system
ence aerodynamic instabiliti¢d]. Computational modeling gpey the desired Navier-Stokes equati@). In a similar
of fluid-structure interactions is, therefore, of significant im-fashion, the lattice spring modéLSM) is adopted from ato-
portance to a wide range of scientific disciplines. mistic models of solid-state and molecular physit8], and
Conventional numerical solutions to fluid-structure inter-involves a network of interconnected “springs,” which de-
action problems generally involve the coupling of a finite scribe the interactions between neighboring units. The large
element method for the structural analysis with either a finitescale behavior of the resultant system can be mapped onto
difference, finite volume, or finite element method to simu-continuum elasticity theory11]. The LBM and LSM are,
late the fluid dynamics. While the solid and fluid subsystemgherefore, both mesoscopic models, whose local rules are
can be solved simultaneoud]§], typically, an approach is guided by atomistic phenomena, but whose emergent behav-
adopted that involves separate computer codes for the solidr captures the continuum properties of the system.
and fluid system$1,6,7. In this so-called “partitioned” ap- In this study, we take advantage of these mesoscale ap-
proach, the governing equations of the fluid and solid phasproaches to formulate a new technique for modeling solid-
are solved individually and sequentially. The two codes ardluid interactions by dynamically coupling the lattice Boltz-
then coupled through the boundary conditions at the solidmann and lattice spring methods. To validate the method, we
fluid interface. For example, the stress that acts on the wettesimulate the behavior of a Newtonian fluid that is enclosed in
boundary from the fluid domain is passed as a load to than isotropic, elastic, spherical shell. As we detail in Sec. Il,
solid domain, with the resultant deformation of the boundarnythis approach allows for dynamicinteraction between mov-
being returned to the fluid domain. This process is repeatethg elastic walls and the enclosed fluid. The moving walls
until consistent results are obtained that satisfy the conexert a force on the fluid and, in turn, the confined fluid
straints of both the fluid and the solid domains. The velocityreacts back on the walls. The specific system we consider
of the boundary can then be quasistatically obtained from there is of particular relevance to microencapsulated fluids.
difference in the boundary locations between consecutivéicrocapsules, which consist of an agent enclosed in an elas-
time steps. This method of coupling two separate codes igc shell, are becoming increasingly important in the pharma-
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ceutical, cosmetics, and food industries. For example, microsimulations of fluid-structure interactions exploit the compu-
capsules containing anticancer drugs can be tailored to targeitional efficiency of both the LBM and LSM techniques.
tumor cells or lesiongl2]. In such applications, the adhesion  In Sec.ll, we detail the governing equations for both tech-
of microcapsules onto specific surfaces can be essential ffiques, and discuss how the two models are integrated to
their functionality[13]. Therefore, in the current study, as a yield our new approach. Section Ill describes our findings
demonstration of the approach, we investigate the dynamichat are obtained with this integrated approach. We validate
of a fluid-filled elastic shell and, in particular, examine the the model by calculating the “breathing mode” oscillations in
coIIisiqn of this deformable capsule with either a h'cllrd_ Or angn elastic shell filled with a Newtonian fluid, and comparing
adhesive surface. We note that a recent study by O'Brien ang, reqyits with analytic solutions. We then utilize the model
Bean [;4] :Jsles_ a smlnlar methodollogy to cpuple tWOI' to examine the interaction between an encapsulated fluid and
glgnvgg\ile?n?n tﬁtetli(r:estsg tztrr?ear]‘?atfilgg Bat)tlttl(z:;asnprzg‘rg ﬂlrjr;g)de S-a flat substrate. In particular, we vary the elastic constants of
' y the shell, the viscosity of the fluid and the interaction poten-

nodes and the “lattice sprindgdr solid nodes are part of one .. . o
and the same lattice. Tr?ey ?hen ob?ain the “spriﬁg forces” 0Nal between the microcapsule and the substrate. The findings

the links connecting fluid and solid nodes directly from the_provide insig.ht into the role that each of.t_he variables plays
solid-fluid boundary condition, using the same bounce-baci the adhesion of the capsule to a specified surface. Conse-
rule as used in our studgee Eq(14) below]. This method, quently, the results_ can prowd_e guidelines for designing mi-
however, does not allow for large deformations of the solid-Crocapsules that bind to specific substrates.
fluid interface.

Before discussing the different methods in detail, we pro-
vide a brief background of the LBM and LSM. In particular,
the lattice Boltzmann method is an effective and expedient A. Lattice Boltzmann model

met_hod for simul:_;uing ﬂUiq ﬂOWS' It has been shown t0 be  rhe |attice Boltzmann model is a lattice-based method for
particularly effective for simulating the hydrodynamic be- qin jating hydrodynamic flows. The simulations consist of
havior of complex, multiphase fluids and fluid flow aroundtWO processes, the first being the propagation of fluid “par-

cpmrl)licatﬁd bkc])undaries. F_or e’}f";‘)ﬁ“p'e* it has been used Rles” to neighboring lattice sites and the second being col-
simulate the phase separation of bingt§-17, ternan{18],  |isjons between particles when they reach a site. Here, fiuid

ap%r?activElmlglyipl)hqseIflui(|ﬁ|$9]. Recentflly,g Iarr]ge number particles are representative of mesoscopic portions of the
of deformable biological cell¢separate fluid phasesvere fluid, and are described by a particle distribution function;

simulated in veinule floW20]. The relative ease with which |0 ;56 the term mesoscopic to represent a length scale be-
the LBM can be implemented at irregularly shaped bound-t

) . . . ween that of atomistic systems and continuum systems. The
aries has facilitated the modeling, for example(@active  jqo eyolution of this particle distribution function is gov-
fluid flow thr'ough porous mg_d@Zl—Z@_ and blood flow erned by the discretized Boltzmann equatia]
through stationary, rigid, artificial aortic valvg®4] and
stented arterief25]. The LBM is also suitable for modeling fi(r + gAt,t+ At) = f(r,t) = f;(r,t) + Q[f(r,1)], (1)
fluid-structure interactions since complex remeshing proce- , . ,
dures for the fluid domain are not necessary. Fluid-structurd/nerefi(r ) =f(r,&,t) describes the density of fluid par-
interactions involving the LBM have so far been limited to ficles at positiorr and timet, with a velocitye. Here,r, &
either nondeformable structures, such as the simulation @ndt are discrete variables, but the distribution function it-
particle-fluid suspension@6-30 and artificial heart valves S€lf is continuous. To illustrate the two separate siepsi-

[31], or simple one-dimensional representations of the strucSioNs and propagation we define f(r,t) as the post-
ture, i.e., the two-dimensional simulation of flow through acollision particle distribution function.

tube whose radius is assumed to be pressure depejg®@@nt  The velocity g in the ith direction is chosen such that
It is highly desirable, therefore, to couple the LBM with a fluid particles propagate from one lattice site to the next in
numerical model of elastic mechanics that allows for de-€xactly one time stept (i.e., a distance ofgAt|). The 19
formable walls. velocities of our three-dimensional modébften termed

The lattice spring model consists of a network of har-D3Q19 correspond to rest particlés=[000]), and to move-
monic springs that connect regularly spaced mass point§nent to the neareste={100}) and next-neareste={110})
Through the correct choice of spring constants, this modeheighbor directions of a simple cubic lattice. In the actual
can be directly mapped onto linear elasticity thefity,33. simulations presented here, both the lattice spadirgnd
The main advantage of the LSM over alternative mechanicahe time stepAt are taken to be unity.
models is its computational efficiency and ease with which The collision operatof)[f(r,t)], accounts for the change
the deformation of highly heterogeneous systems can b f; due to instantaneous collisions at the lattice nodes; its
simulated[8,34,35. For example, the LSM has been shown action depends on all thig's at a node, denoted collectively
to accurately capture the elastic fields that correspond tby f(r,t). We adopted a multirelaxation time collision opera-
Eshelby’s well-known theoretical solutions for the elastic be-tor [40], which, in contrast to the more widely employed
havior of an inhomogeneous materfidll] and has been suc- single relaxation time collision operator, enables us to assign
cessfully used to simulate the deformation of multiparticulatendependent values for both the shear and bulk viscosities
systems[34—-3g. We therefore adopt the LSM as the me- (see Appendix A External forces can be incorporated in the
chanical model to couple with the LBM. In this manner, collision step in order to mimic gravitational forces or an

Il. METHODOLOGY
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externally applied pressure gradient; however, such influ- . j-e (pvv+II“eq*):(e,e,—c$I)
ences are not relevant to our study. TalprT ot 2ch . (6)
The hydrodynamic quantities, mass dengitynomentum f f
densityj, and the momentum flukl, are moments of the We emphasize that the collision process locally conserves
distribution function both mass and momentum, but relaxes the stresses toward
local equilibrium. We also emphasize that as the fluid
p= E fi, evolves toward equilibrium, the relaxation of the deviatoric
|

and hydrostatic portions of the stress tensor occurs indepen-
dently. This separation of relaxation times enables us to vary

j= > fie = pv, independently the shear viscosity and bulk viscosity»g
i [28], which are given by
7 o1 1)
— _ —=-cf| —+ 2 ]At,
=2 fiee. 2) ) f<)\ 5
Here,v is the local fluid velocity. In the LBM, these quanti- s o 2
ties evolve toward local equilibrium. For flow velocities ?:_Cf §+§ At. (7)
B

much less than the speed of sound, the local equilibrium
distribution function can be obtained by expanding theThis allows us to simulate the hydrodynamics of Newtonain
Maxwell-Boltzmann distribution as a Taylor series in the lo- fluids with a wide range of shear and bulk viscosities.

cal velocityv, i.e.,

v-e wiee czl) B. Lattice spring model

: (68 - ¢

qu=pai[1 T2 T+ |2é4 ] ©) The solid elastic material is represented by a rotationally
f f

invariant Hookean lattice spring model, consisting of a net-
where ¢?=c?/3, with c=Ax/At, and ¢; is the isothermal ~work of harmonic springs that connect regularly spaced mass
speed of sound in the fluid;is the unit tensor. The weights points or nodes. The elastic energy associated withitthe

a, only depend on the magnitude of the velodigyf and are  hode is given by

equal to3, 15, and 5; for the rest particles, the nearest- K

neighbor, and the next-nearest-neighbor directions, respec- E=—2 (Iry| = Irih?, (8)
tively. The expansion in Eq3) is truncated at Q/2), which 27

turns out to be sufficient to simulate the Navier-Stokes equagare the summation runs over all nearest and next-nearest
tion [41]. The second mpment of the equmbrlum distribution neighbor nodes, i.e., over alL00 and {110 bonds of an
function gives the familiar Eulerian expression for the Stres‘?nitially cubic lattice. Herer; | is the distance between the

tensor ith andjth nodes|r{| is the equilibrium spring length arid
is the spring constarf42]. (Note that using a cubic lattice
eq: e = . . . . .. .
I §|: free =pl +pwv, ) consisting only of{100 bonds is insufficient for capturing
isotropic elastic behavidd1].) This results in a forc&;; due
with an ideal-gas equation of stqbe:pcfz. to an extension or contraction of the spring connecting nodes

Mass and momentum are conserved in the collision prot andj of the form
cess; hence,f;=%,;f79 and =;f,e ==;f{%, as can be readily 0
verified from Eqgs(2) and(3). However, the momentum flux F.o=- IEi —_ k(w)r (9)
is modified by the collision operator. In particular, the non- ! arj; |rij| .

equilibrium stress tensdd"%=I1-11°% is modified accord- . . .
ing to Eq. (A1) (see Appendix A resulting in a post- For small deformations, this system of equations can be
collision nonequilibrium stress tensor that is given[Bg] shown7 to obey ITear elastlc_lty_theory and_resultg n a
Young's modulu€E=5k/2Ax. This simple model is restricted
_ 1 to a Poisson’s ratio of=1/4 [43,44], although more com-
TI"e9* = (1 + M9+ 5(1 +\g) (™41 (5  plicated many-body interactions can be included in order to
vary v [45,44.
Here,\ and\g are relaxation parameters that appear in the To capture the dynamics of this system, we must assign
collision operator. They control the relaxation of the fluid masses to the nodes and integrate Newton’s equation of mo-
toward equilibrium and determine the shear and bulk viscosition

ties of the fluid. The termlI"®%| is the trace, andI"®d r
=T1"*%- (11" 1)1 is the deviatoric part of the nonequilib- Fi= Mi?,
rium stress tensor.

Using Eq.(5) for the post-collision nonequilibrium stress with M; the mass of the nodieand F; the force acting upon
tensor, we can write the post-collision distribution functionit. We utilize the velocity Verlet algorithm to integrate Eq.

f; defined in Eq(1), as[28] (10). This is a well-known molecular dynamics algorithm

(10
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that uses the positions, velocities, and accelerations atttime

to obtain the same quantities at tiheAt in the following ho ® LSM nodes
way [47]: : b
1 e <\‘o 0 LBM fluid nodes
it + A = 1(0) + Vi(DAL+ Sa (DAL, Wy
2 e o © LBM boundary nodes
vi<t + E) =v;(t) + }&(t)At, i o e
2 2 3 >
,): <\\O
Fi(t) S e
(t+ At = —— Rl S
a(t+At) M, Pl
At) 1 o
vi(t+At):vi<t+E> +5a1-(t+At)At, (11

FIG. 1. (Color online Two-dimensional representation of the
where v, and a; are the velocity and acceleration node solid-fluid boundary. The lattice spring lattice is depicted by thick
Therefore, given applied forces and initial deviations fromlines while the lattice Boltzmann lattice is represented by thin lines.
equilibrium, the dynamic evolution of the material, including Solid LBM nodes are defined as being nodes within a given dis-
the propagation of undamped elastic waves, can be acciance of a LSM nodéshown here as dashed circles around LSM
rately captured. Damping can be incorporated, for example?urface nodes The remaining LBM nodes are then dgfined as qui.d
through the inclusion of a viscous damping term proportionafiodes. Boundary nodes are located halfway on links connecting
to the velocity, but will not be considered here. fluid and solid nodes.

only the mass density and the velocity, making our imple-

C. Solid-fluid coupling mentation correcfsee Eqgs(3) and (6) for II"9*=0]. We
In order to capture the fluid-structure interactions, LSMNote that this issue is not unique to our approach, but an
nodes that are situated near the solid-fluid interface mudfherent problem of the link bounce-back rule and present in
impose velocities on the enclosed fluid through boundanfnY Systém with moving boundaries, as for example, in par-
conditions and, in turn, experience forces due to the fluidh

icle suspensionf28,48. We also note that it is possible to
pressure and viscous stresses. First, however, we must decigﬁe interpolation to obtain the nonequilibrium particle distri-
which LBM nodes are “solid” and which are “fluid.” The

ution function[49], but we have not yet implemented this
. . idea[50].
masses at the LSM nodes represent mesoscopic portions g]e X .
the elastic material. We can, therefore, define “solid LBM” Fluid nodes that are destroyed are simply removed from

nodes as nodes within close proximityalf the equilibrium the fluid phase in a way discussed in detail by Nguyen and

> Ladd [48]. This results in a rate of fluid mass that is de-
[111] lattice length of a LSM node. All other nodes are qoved (created being equal to the rate at which mass is

consequently “fluid LBM” nodes. This situation is depicted introduced(removed in the system as a result of the link
in Fig. 1, which shows a two-dimensional representation of &,oynce-back schenfsee Eq(12) below], with an error that
solid-fluid interface. The LSM lattice is represented by th|Ck|S due 0n|y to a finite Compressib”ity_ However, the LBM is
lines and the underlying LBM lattice is represented by thingpplicable only to systems with sufficiently small compress-
lines. LBM nodes that lie within a given distance of a LSM ibility, thus minimizing this effect. In our simulations, we
node (represented by the dashed circles in the fig@e  checked the rate at which fluid mass is globally created or
considered to be solid LBM nodes, while the remainingdestroyed and found the lack of global mass conservation to
nodes are considered to be fluid LBM nodes. be negligible.

This characterization implies that fluid LBM nodes are The fluid interacts with the surrounding solid via the so-
both created and destroyed as the LSM lattice deforms anchlled link bounce-back rule. This particular implementation
moves with respect to the underlying LBM lattiée@hich is  of the no-slip boundary condition at the solid-fluid interface
fixed in spacg If the solid material moves, such that fluid is robust, relatively simple, obeys global mass conservation,
nodes are created, then these nodes are assigned an equiibd does not require surface normals or tracking of the actual
rium particle distribution functiofisee Eq(3)] with a veloc-  three-dimensional solid-fluid boundary. Its main disadvan-
ity equal to the local wall velocityfobtained in a manner tage is its first order accuracy in the spatial discretization, a
similar to Eq.(13) below] and a mass density equal to the shortcoming that can be minimized by a calibration of the
average local mass density of the neighboring fluid nodes. Agffective location of the boundaf26,28 or by using a par-
this stage, we ignored the fact that fos= =1 orAg# -1, this  ticular set of eigenvalues of the collision operafarl].
results in inaccuracies in the local shear stress. HoweveFEor improved bounce-back schemes as well as references
most of our simulations use relaxation paramefars) of  to other implementations we refer to a recent paper by
-1, resulting in a relaxation of the stresses in exactly onésinzburg and d’Humieref51].
timesteg see Eq(5)]. Hence, for these simulations, the post-  In the link bounce-back scheme, the solid-fluid interface
collision distribution function is completely determined by is represented by LBM boundary nodes, defined as points in
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space that are located halfway on each link that connect: LSM iteration

neighboring solid and fluid LBM nodetsee Fig. 1 Fluid ((Catcutte elasic forces from springs

particles that are being propagated toward a boundary nod Obtain new positions, velocities and

(in the i direction are then reflected back in the direction /Lcce'm“‘)"s e }\

they came from and modified such tlﬁﬁﬁ], [Rateofmomentum exchange——forces]

Weighted average of velocities from I
Distribute forces from LBM boundary]

nodes to LSM mass points

LSM nodes to LBM boundary nodes

2pa;e -
fk(r,t+At)=fr(r’t)_%"b(rb), (12)
f

LBM iteration
[Locate of solid/fluid LBM nodes ]
I

wherek is the direction opposite tg andvy(ry) is the ve- :

locity of the boundary node situated mf=r +e/2. In order PO e :
to obtain this velocity, we perform a weighted average of the
velocities at the surrounding LSM nodes, i.e., —  lmmmmeemmmea o

[ Collision operation; ]
v(r)/(r —rp)?
Vy(ry) = 2’[ (DK o) ] (13) FIG. 2. Flowchart depicting the coupling between the lattice
bb Er [1/(r - rb)Z] ' Boltzmann model and lattice spring model. A LSM iteration con-

sists of calculating the elastic forces and the solid-fluid stresses and

wherer andv(r) are the position and velocity of a neighbor- updating the positions, velocities and accelerations of the LSM
ind LSM node. and the summation is taken to be over I_SMnodes using the Verlet algorithm. A LBM iteration consists of de-
n(?des within 6’1 cutoff distanc®. Hence. the closer a LSM termining the locations of fluid and solid nodes, propagating fluid

node lies to a boundary node, the larger its contribution ir1o_artlcles to neighboring nodes and having particles undergo colli-

L . . sions at each node. The propagation step consists of two parts
deflrllzng the poundary node velocity. nge, the partIClﬂtgr (dashed boxgsfree streaming of fluid particles to their neighboring
~rp)”° weighting is chosen for convenience. The optimalpgges whenever these nodes are in the fluid domain and applying
value of D depends on the resolution of the underlying lat-the hounce-back boundary condition otherwise. The velocity at the
tices, but has to be large enough to prevent unphysical flucsolid-fluid boundary is obtained from the Verlet algorithm and used
tuations in the boundary node velocities. These velocitiesn the LBM bounce-back boundary condition. Fluid forces are then
are, on the other hand, not very sensitive to the precise valusbtained from this boundary condition and used as input for the
of D due to our choice of the weighting function and we LSM update.
found the results to be nearly independent ffor D
=3Ax. In the simulations presented here, we uBsd5AXx. _ U(r —rp)?

As a result of the bounce-back rule, the fluid exerts a F(r)=2r Fb(rb)—b, (16)
force on the solid-fluid interface. This force is taken to be ° > U =ry)?
equal to the rate of exchange in momentum that takes place

as the fluid particles are bounced back at the boundary nodegnere the summations. over both neighboring LSM nodes
The contribution from a single bounce-back event is of the(Er) and boundary noaeSZr ), are over nodes that are
b 1

form within a certain cutoff distance, again chosen to be five lat-

At tice spacings.
Fb<rb,t+ —) =f(r,t)g — f (r,t + At)g, To summarize, the simulation proceeds through the itera-
2 tive update of both the LSM and LBM systems. A flowchart
. pae -Vy(ry) of the coupling between these systems is shown in Fig. 2.
=2 fi(r.1) T2 (14 The LSM system is updated by first calculating the forces
f that are acting on the LSM nodes, due to both the LSM

In the applications discussed in this paper, we assume that, 8rings and the enclosed fluid. The positions, velocities, and
equilibrium, the elastic shell does not inflate due to the presaccelerations of the LSM nodes are then updated using the
ence of the enclosed fluid. Hence, to obtain the applied forceverlet algorithm. In updating the LBM system, we first es-

we subtract the equilibrium pressure due to the presence &#blish which LBM nodes are solid and which are fluid, and
the fluid at rest, i.e., then obtain the location and the velocity of the LBM bound-

ary nodes. Next, we propagate the distribution function by
— At At streaming fluid particles to their neighboring nodes whenever
Fb<rb't + E) = Fb<rb't + E) =~ 2pod;, (15 these nodes are in the fluid domain and applying the bounce-
back boundary condition otherwise. Finally, we modify the
with py being the equilibrium density. This force acts on thedistribution functions at the LBM nodes to account for the
boundary nodes of the LBM lattice and must therefore becollision step. The bounce-back rule is implemented by using
distributed among the neighboring LSM nodes. Once agaima boundary node velocity that is obtained from the velocities
a convenient choice is to weight these contributions in-of the surrounding LSM nodes and returns the fluid forces
versely by the square of the distance between the boundatiiat are acting on the solid-fluid interface. Hence, the fluid
nodes and the neighboring LSM nodes. Hence, the total forcenposes stresses on the surrounding solid and the solid dic-
on each LSM node is of the form tates the velocity of the fluid at the solid-fluid interface.
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In this section, we have shown that it is possible to couple
the LSM and the LBM, allowing for a dynamic interaction
between the elastic material and the confined fluid. Further-
more, the speed of sound in the sald= y3k/MAX) can be
set relative to that in the fluific;=v1/3(Ax/At)], allowing
us to vary the ratio between the speeds of sound in the solid
and fluid domain in order to meet the characteristics of an
actual experiment. In the next section, we validate the
coupled model and apply it to a study of the impact of a
fluid-filled, elastic shell on a hard wall and on an adhesive , , , ‘ , , , ,
surface. 2 4 6 8 10 12 14 16 18 20

h/Ax

(® - wg) / o (%)
O AN W HA OO N ©®

lll. RESULTS AND DISCUSSION FIG. 3. Comparison of our simulation results with the analytical

We investigate the dynamic behavior of an elastic, spherisolution for the breathing-mode frequency of an elastic siell
cal shell that is filled with a Newtonian fluid. First, we con- Vacuo The percentage deviation of our simulation resultéom
sider the “breathing-mode” oscillations of this system andthe analytical solutionwy are presented as a function of the shell
compare our results with analytical solutions. Next, we Con_thicknessh. The circles mark the data points; the line is drawn as a

sider the fate of a fluid-filled, elastic shell impacting a harg9|de for the eye.

surface and bOUI’]Cing back in the Opposite direction. Fina“y, Figure 3 depicts the percentage deviation in the brea‘[hing_
we simulate the impact and cohesion of a fluid-filled shell ONmode frequencyuo between the simulation result and that
an adhesive wall in order to gain an understanding of howsbtained from the full analytical solutiofB23) as a function
the capsule-wall interactions affect the dynamical behavior.of shell thickness. For a thin shell of two lattice spacings,
there is almost a 9% difference between the frequency of the
A. Breathing-mode oscillations of a spherical shell simulated oscillation and the theoretical prediction. How-
_ _ ever, as we increase the shell thickness, the simulation results
We validate our coupled model by comparing our resultsconverge with the analytical solution. As the thickness of the
for the osciIIatory behavior of an elastic shell, bathvacuo shell is increased, a greater number of LSM nodes are em-
and when filled with a Newtonian fluid, with theoretical pre- ployed in describing the elastic properties of the shell, mini-
dictions(see Appendix B Initially, we deform the shell such mizing discretization effects and, consequently, deviations
that it is radially expanded; we then study the response of thirom the theoretical prediction. For a shell thickness of ten
system by allowing the shell to relax toward its equilibrium, lattice spacings, the simulation results are within 2% of the
undeformed state. Following the initial expansion, the sysanalytical solution. Therefore, we choose this thickness in
tem will contract and expand in an oscillatory mannerthe remainder of this paper.
(“breathing modey with a characteristic frequency. For an ~ Next, we test the coupled model by calculating the
elastic shellin vacuothese oscillations are undamped, andbreathing-mode frequency of an elastic shell that is filled

the lowest frequency is given by with a Newtonian fluid. We use the same numerical experi-
ment of an initially radially perturbed system. To aid in vi-

(1 2E |12 h? sualizing the results, we plot a snapshot of the system in Fig.

PR/ p1-) 1+0\ ) |- (17) 4, showing both the elastic shell and confined fluid as the

shell is expanding. For clarity, we only show the image for

Here,R s the middle radius of the shehi,its thicknessE its  half of the system. The shell is colored red and the velocity
Young's modulus,ps its density, andv its Poisson’s ratio.  of the fluid is represented by “cones” that point in the direc-
The leading term was first obtained by Laif8®] [see also tion of fluid flow. The size of the cones depicts the magni-
Egs.(B3) and(B25)]. Corrections to this term are small and tude of the velocity. Figure 4 clearly shows that the fluid
usually ignored; they are of ordgh/R)? and result in a moves radially outward as the shell expands, with a velocity
relative increase inwg of only 1.6% forh/R=0.5[as ob- that varies in the radial direction.
tained from Eq.(B23) for v=1/4]. To quantify our observations on this system, we first mea-

First, we test the LSM by calculating the breathing-modesure the average radial displacement over all LSM nodes.
frequency of an elastic sheilh vacuoas a function of the Figure 5 shows the relative average radial displacement as a
shell’s thickness. The middle radius of the siiik takento  function of time (normalized with the period of oscillation
be 50 lattice sites, and we fix the Young’s modulus and denT,=27/w, for an elastic shelin vacug. A positive value
sity of the shell atE=67.5 andps=11.25(in lattice unit3,  corresponds to an expansion and a negative value to the con-
respectively. Remember that for our particular LSH, traction of the elastic shell. We ugs=25/16 andps=11.25
=5k/2Ax, ps=M/(Ax)3, while the Poisson’s ratiov is re-  (in lattice unit3, resulting in a ratiacs/c;=1/12 between the
stricted to 1/4(see Sec. Il B Hence, in the remainder of this speed of sound in the shell and that in the fluid. This ratio is
paper, we will use the physical variablEsand ps, instead of  small enough to ensure that we only excite a single fre-
the LSM variablek andM. The speed of sound in the shell quency, in this case the lowest order breathing m¢sie
is then given byc,=16E/5p,, consistent with Eq(B3) for  Fig. 6). The fluid density;=1, whileR=50 andh=10, all in
v=1/4. lattice units.
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FIG. 4. (Color onling A fluid-filled shell undergoing breathing modulus of the elastic shell. Simulation results for both shiells

mode oscillations. The shell is colored red and the velocity of theyacuo (squares and fluid-filled shells(circles are compared with
fluid is depicted by blue cones whose size and orientation depict theheir theoretical predictiongines).

magnitude and direction of the velocity field.

a bulk viscosity ofyg=40/6, for which the frequency of the
é)scillations is affected by the value of the bulk viscosity,

In order to assess the effect of the enclosed fluid on the: : . o ; ; .
oscillatory behavior of the elastic shell, we vary the bulk andWlth the frequency Increasing W'.th increasing bulk viscosity.
' We then compare our simulation results for the breathing-

shear viscosities of the flgi(_j. Variations of the shear viscosit ode frequency with the analytical solution for an elastic
are fognd to have a_negllglble effect on the- freque.ncy of th&pel filled with an inviscid fluid'see Appendix B Here, the
breathing-mode oscillations. We therefore fix1/6 (in lat-  (o5nective shear and bulk viscosities are taken to be 1/6 and
tice unity, i.e., A=-1, ensuring instantaneous relaxation of 1 /g (in lattice unit3, ensuring that we are in the weak-
the shearstresses to local equilibriisee Eqs(5) and(7)].  gamping limit, i.e., that the effect of the damping on the
The bulk viscosity, however, has an appreciable influence ofrequency of the oscillation is negligiblesee Fig. 5. This
the oscillatory behavior of the elastic shell. This is to bemakes comparing the frequencies with theoretical predic-
expected since the breathing-mode oscillations change thons for an inviscid fluid meaningful. We then vary the
total fluid volume enclosed by the shell, and the bulk viscosshell's Young’s modulus to obtain results for a large range of
ity controls the effect of this volume change on the resultantatios between the speed of sound in the shell and that in the
hydrostatic pressure inside the shell. We therefore focus oftuid. All other shell and fluid properties are the same as
the effects of varying bulk viscosity in Fig. 5. It is clear that given in the empty shell example above. Figure 6 compares
as the bulk viscosity is increased, the oscillations becom#he results from our simulations with the theoretical results
more strongly damped; this is particularly evident from theobtained from Eq.(B27). The breathing-mode frequencies
diminishing amplitude forp=40/6. Figure 5 also shows a are nondimensionalized with the middle radius of the shell
transition from weak damping to strong damping evident forand the speed of sound in the fluid, and plotted as a function
of the ratio between the speeds of sound in the shell and the
03 , , fluid. Forcs/c;=2.5 we clearly excite the two lowest breath-
ing mode frequencies. Increasig/c; gradually increases
the ratio of the amplitude of the second mode relative to that
of the first mode, from 0.12 ati/c;=2.45 to 2.8 atc./c;
=3.87. Contribution of higher order modes was negligible
for the range ofcs/c; in Fig. 6. Hence, the simulations
clearly capture the lowest two branches of the breathing-
mode frequency spectrum. Figure 6 also shows the results
for the elastic shelin vacuoin the same nondimensional
units. It illustrates that the breathing-mode frequency spec-
trum for the elastic shell filled with an inviscid fluitEq.
0 05 ] 15 5 (B27)] roughly resembles that of a superposition of that for
t/T, an elastic shelin vacuo[Eqg. (B23)] and that for an inviscid
fluid in a rigid cavity[Eq. (B30)].

FIG. 5. The relative average radial displacement as a function of Figure 6 shows that the simulation results are in good
time for fluid-filled shells oscillating at their breathing mode fre- agreement with the theoretical predictions, validating our
quency and containing fluids with varying bulk viscosities. Here,technique. As a demonstration, we now turn our attention to
time is normalized with the period of oscillation of an elastic shell investigating the collision between this fluid-filled, elastic
in vacua shell, and a hard wall.

0.2 r

0.1 ri

103 (<r> - <rg>) / <rg>
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FIG. 7. (Color) Time frames showing the impact of a fluid-filled elastic shell on a hard wak-200[(a), top, lef], t=600[(b), top,
right], andt=1000[(c), bottom|. The velocities in the fluid are depicted as red cones whose size and orientation represent the magnitude and
direction of the velocity field. The size of the cones are scaled by a factor of 2@Damd (c), and 1500 in(b) in order for the cones to be
visible. The shell colors are a measure for the equivalent strain in the solid domain.

B. Impact of a fluid-filled spherical shell on a hard wall the shell is colored to represent the elastic material's

Here, we consider the impact of a fluid-filled shell on a “e€quivalent strain,” which is defined ag,= V53U, with u;
hard wall in theyz plane, which we introduce through the being the strain tensor. The equivalent strain provides an
use of a repulsive exponential potential that acts upon thésotropic scalar measure of the strain level. As indicated by
LSM nodes. In particular, we mimic a hard wall by imposing the color bar in the figure, the regions that are most deformed

a force on the LSM nodes of the form are marked in red. The velocity of the fluid is again repre-
sented as cones that point in the direction of fluid flow and

exr<_ (re—= rx,w)) < -56 whose size depict the magnitude of the velocity. The elastic
F(x) = o b ’ (18)  shell and the enclosed fluid are initially assigned the same

0, r,>—56. velocity v,=-v, as the capsule moves toward the wall and

the system travels unperturbed until it reaches the wall. The
Herer, is the x coordinate of a LSM noder,,,=-58, and magnitude of the initial velocity,=0.02 is roughly an order
0=0.2;0 is a measure of the length scale of the sphere-walbf magnitude smaller than the speed of sound in the fluid.
interaction and is chosen to be much smaller than that of thelnless specifically mentioned otherwise, we uge
lattice spacingwhich is unity). =25/16 ps=11.25 (giving cs/c;=1/v2), R=50h=10,p
The dynamic behavior of a fluid-filled elastic shell as it =1,7=1/6, and7g=1/9 (all in lattice unit3. Figure Ta)
impacts a hard wall is depicted in Fig[33]. The surface of depicts the shell as it reaches the hard wall. The shell de-
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FIG. 8. The average velocity in an elastic shellvacuoas a FIG. 9. The average velocity in an elastic shiellvacuoas a
function of time as it impacts a hard wall, for shells of varying function of time as it impacts a hard wall, for shells containing
Young's modulus. The velocities are normalized withand time  fluids of varying shear viscosity. The velocities are normalized with
with R/c¢;. v and time withR/c;.

forms as it impacts the wall due to the strong repulsive forceaway from the wall(positive velocity. It should be noted
It becomes compressed at the region of imdaetl part of that the magnitude of the shell’'s velocity as it travels away
the shell surfaceand appears slightly flattened. The velocity from the wall is slightly lower than that of its initial velocity.
of the shell in the region of impact is significantly decreased;This is due to energy being transferred upon impact to elastic
while the velocity in the rest of the system is still close to thedeformations that propagate around the spherical shell; the
initial velocity. shell effectively “rings” as it travels away from the walln
Figure 1b) depicts the shell at its maximum deformation, these simulations, these internal vibrations are undamped.
just as it starts to rebound off the hard wall. The kinetic With this insight into the behavior of an empty elastic
energy of the moving system has largely been converted intehell, we return to the case of the fluid-filled, elastic shell to
elastic energy through the deformation of the shell. The reinvestigate the effects that the fluid properties have on the
gions that are most deformed are represented by red surfacéspact behavior of the system. As the shell impacts the hard
For the selected parameters, the shell only appears to hveall, stresses act on the fluid in the region of impact, and
significantly deformed in the region of impact. However, thethese stresses are transferred to other regions of the fluid and
rest of the shell is also deformed as it “bends” and becomethe shell. The deformations appear to be relatively volume
“squashed” or compressed as a result of the impact. In factonserving for the parameters considered here and, as such,
the first regions that begin to recover are those farthest awaye expect little influence of the bulk viscosity on the impact
from the region of impactas indicated by the reversed ve- behavior of the system. However, we expect significant gra-
locity cones on the opposite side of the impact regi@md  dients in the fluid’s velocity field as the shell comes to a halt,
those on the sidegas indicated by the inwardly pointing and ultimately rebounds in the opposite direction. Hence, we
velocity coneg anticipate a significant influence of the shear viscosity on the
The elastic energy stored in the deformed shell is transeollision process. We varied both the shear and bulk viscosi-
ferred to kinetic energy as the elastic shell regains its originalies, and found, indeed, that varying the bulk viscosity has a
shape. Figure (€) shows the system just before the shellnegligible effect compared to that of varying the shear vis-
leaves the surface. The only region of noticeable deformatiogosity. Hence, we fix the bulk viscosity to 1/@ lattice
is the region of the shell that is still in contact with the hardunits), i.e., A\g=—1, ensuring instantaneous relaxation of the
wall. The rest of the shell has already regained its originabulk-stresses to local equilibriufisee Eqs(5) and(7)]. We
shape. The velocity in the fluid is near zero near the region othen vary the shear viscosity, keeping all other variables
the shell still in contact with the wall, but is directed away fixed at the same values as for the empty shell simulations.
from the wall in the rest of the shefivith nearly the same Figure 9 shows the average velocity of the shell as a function
magnitude as the velocity before impact of time, for shells containing fluids of different shear viscosi-
In order to better understand this dynamic behavior, wdies. As expected, increasing the shear viscosity increases the
first return to the simpler case of an elastic shelfacuoand  damping of the shell dynamics. In particular, the velocity of
consider the effects of varying the Young's modulus on thethe shell decreases more rapidly, and the shell rebounds from
shell's impact with a hard wall. Figure 8 shows the averagdghe wall with a significantly lower velocity. The initial ki-
velocity of the elastic shell, normalized wiify, as a function netic energy of the system is no longer primarily stored as
of time, normalized withiR/c;. Increasing the Young's modu- elastic energy, but is now significantly dissipated by the
lus has the effect of decreasing the amount of deformation ifluid.
the elastic shell and, therefore, decreases the time it needs to We have shown how the mechanical properties of the
recover its original shape. This can be seen in Fig. 8 from thelastic shell and the viscous behavior of the enclosed fluid
time it takes for the average velocity to change from propainfluence the dynamics of a fluid-filled shell impacting a hard
gating toward the wall(negative velocity to propagating wall. As noted in the Introduction, the binding of microcap-
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FIG. 10. (Color) Time frames showing the impact of a fluid-filled elastic shell on an adhesive wa3f0[(a), top, left], t=600[(b),
top, right], andt=900[(c), bottom]. The velocities in the fluid are depicted as red cones whose size and orientation represent the magnitude
and direction of the velocity field. The size of the cones are scaled by a factor of 500 in order for the cones to be visible.

sules onto surfaces can be essential to their functionalitgnd o and e control the range and magnitude of the interac-
[13]; consequently, in the next section, we consider the imtion. Note that the force changes sign at some vajee, .,
pact of a fluid-filled elastic shell on an adhesive wall. and that it is attractive for,<r,. and repulsive forry
>ry . Equation(19) implies that as a LSM node approaches
C. Impact of fluid-filled spherical shell on an adhesive wall the wall, it experiences a pure]y repu]sive interaction mim-
In order to mimic the “tackiness” of an adhesive wall in icking a hard wall; however, as it moves away from the wall,
the yzplane, we replace the exponential force used in thdt experiences an attractive potential. In this manner, the shell
previous section to simulate a hard wall with a velocity- €xperiences “tackiness” as it impacts the adhesive surface.
dependent force that can be either repulsive or attractive. FoiVe have setr=0.8, fixing the range of the repulsive part of
convenience we use a force that is defined through a poteithe potential(ry,  —ry,) =c2Y6~1.
tial Figure 10 captures the dynamic behavior of a fluid-filled,
12 6 elastic shell impacting the adhesive WaB]. Unless specifi-
46{< g ) _< g ) } ry<rfyeOvy>0, cally mentioned otherwise, we use in this secti@n
U(r) = I'x = Ixw Fx = Ixw ‘ =25/4 ps=11.25 (giving CS/Cf=\5§), R=50,h=10,0;=1,7
0, >y Ovu,<O.
(19

the fluid is directed toward the wall and the deformation of

=1/6,73=1/9, andvy=0.02 (all in lattice unitg. Figure
10(a) shows the shell as it impacts the wall. The velocity of
Herer, is thex coordinate of a LSM node, ang its velocity
in the x direction;r,,,=-58 is thex coordinate of the wall

the shell is localized in the region of impact. Similar to the
impact of a fluid-filled shell on a hard wall, the shell deforms
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FIG. 11. The average velocity in a fluid-filled elastic shell as a  FIG. 12. The average velocity in a fluid-filled elastic shell as a
function of time as it impacts an adhesive wall of varying interac-function of time as it impacts an adhesive wall at varying velocity.
tion strength. The velocities are normalized withand time with ~ 1he velocities are normalized witty and time withR/c;.

R/Cf.

) o ~ most notable feature is that the frequency of the oscillations
upon impact, after which it comes to a halt. As the elasticof the adhered shell increases as the speed with which the
energy stored upon impact is released in the form of kinetighe|| impacts the adhesive wall is increased. The shell under-
energy, the shell begins to move away from the wall. This isyoes greater deformation as it impacts the wall at a higher
shown in Fig. 10b), where the system starts to move away speed, resulting again in a larger region of the shell being

from the wall in the regions that lie opposite to the area ofaghered to the wall, and increasing the frequency of the os-
impact. In the region of impact, however, the velocity re-qjjjations.

mains essentially zero as the shell adheres to the wall. Hence, Next, we investigate the effects of varying the Young’s

the shell stretches out, trying to pull away from the wall, butmogulus of the shell on the dynamics of the fluid-filled shell
remains “stuck” if the adhesive force is large enough is  jmpacting an adhesive wall. Figure 13 shows the average
the case in Fig. 10 The elastic energy in the shell increasesyg|ocity as a function of time. Similar to Fig. 8, an increase
as the nonadhered portions become elongated away from thie the Young's modulus generally results in a decrease in the
wall, pulling the shell back toward the wdliee Fig. 1(c)]. amount of deformation and hence a decrease in the area of
The system then starts to oscillate between these two stategntact, enabling the shell to regain its original shape in less
either squashed against the wall or elongated away from ityime . Figure 13 shows that when the adhesion is strong
First, we study the effect of varying the interaction gngygh, the shell adheres to the wall and starts to oscillate
strength between the fluid-filled shell and the adhesive wallyith a frequency that increases with increasing Young's
In particular, the value of the interaction parametén Eq.  modulus. This frequency dependence on Young's modulus is

(19), is varied from 0.2 to 1.Gin lattice units. Figure 11 g ajitatively similar to that of the breathing mode vibrations
shows the average velocity of the shell as a function of timegs 5 elastic shelin vacuoas given by Eq(17).

Whether the shell rebounds off the wall, and how, is affected Eingjly, Fig. 14 shows the effects of varying the shear

by the attractive interaction with the wall. Fe=0.2, the  yjiscosity of the enclosed fluid. In particular, we plot the av-

adhesive force slows down the shell as it moves away fromyrage velocity of the shell as a function of time for shells
the wall, but the attraction is too small to bind the shell to the

wall. For higher values of, the adhesion is strong enough to 05 , . . . . ,
bind the particle to the wall, and the shell starts to oscillate ay ey
between a “squashed” state and an “elongated” state in a & e re
manner close to that depicted in Fig. 10. As the interaction S
strength is increased, two things occur: the amplitude of the 0r
oscillations in the averaged velocity decreases, and their fre-
quency increases. The increase in interaction strength in-
creases the area of adhesion, thus limiting the regions of the 05 |
shell that are free to vibrate. The greater the area of a shell
that is adhered to the surface, the higher the frequency of
oscillation. This is consistent with Eq17), which does in E = 125/16 -t
fact indicate that smaller shells oscillate at a higher fre- 0. 5 4 8 8 10 12 14
guency. te /R

A similar phenomenon occurs when the shell impacts the
adhesive wall at different initial velocities. Figure 12 shows F|G. 13. The average velocity in a fluid-filled elastic shell as a
the average velocity, normalized witly, as a function of function of time as it impacts an adhesive wall, for shells of varying
time, for shells that impact the adhesive wall with initial Young’s modulus. The velocities are normalized withand time
velocitiesvg of 0.01, 0.02, and 0.03. Here, we féex1. The  with R/c;.

E=2516 —B—
E=7516 o

056707-11



BUXTON et al. PHYSICAL REVIEW E 71, 056707(2005

05 ' ; ; ; ; ' multicomponent liquids or liquid-gas mixtures. Modeling the
flow of complex fluids through laterally or radially heteroge-
neous pipes is important for various scientific and engineer-
ing applications. If the tubes are constructed to represent
biological systems, we can use the simulations to probe
blood flow in capillaries or air flow through compartments in
the lungs. Thus, the integrated LBM-LSM model opens up
the possibility of accurately and efficiently capturing dy-
namic interactions between fluid flow and structural interac-
tions in a broad variety of systems.

<v>/ vy

05 ¢

N =127/ e

0 2 4 & 8 10 12 14
tc/R ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support
FIG. 14. The average velocity in a fluid-filled elastic shell as 4rom ONR. ARO gand DOyE g PP

function of time as it impacts an adhesive wall, for shells containing
fluids of varying shear viscosity. The velocities are normalized with
v and time withR/c;. APPENDIX A: THE LBM COLLISION OPERATOR

The time evolution of the particle distribution function is

containing fluids with shear viscosities=7/6,31/6, and ¢, erned by the discretized Boltzmann equation, where the
127/6. As the shear viscosity is increased, the oscillationg ) iision operatorQ[f(r ,t)], accounts for the change if

become increasingly damped, in a way that is qualitativelydue to instantaneous “molecular” collisions at the lattice

similar to the situation of a fluid-filled, elastic shell impact- nodes[see Eq.(1)]. A computationally useful form for the
ing on a hard wallsee Fig. 9. collision operator can be constructed by linearizing about the
local equilibrium distribution functiof54]

V- CONCLUSIONS Offr,0]=2 Lilfir.0 - 1% ,0], (A
In summary, by coupling the lattice spring modeEM) J

of elastic mechanics and the lattice Boltzmann methodvhere£;; are the matrix elements of the linearized collision

(LBM) for fluid dynamics, we have developed a flexible, operatort. This linearized collision operator must satisfy the
robust, and relatively simple method for solving fluid- following eigenvalue equations:

structure interactions. In this paper, we demonstrated the va-

lidity of this approach by simulating the breathing mode os- > L;=0,
cillations of an elastic, fluid-filed spherical shell and i
comparing the results with analytical solutions. We find
good, quantitative agreement between the simulation and
analytical results. Furthermore, we demonstrated the utility o L
of the approach by investigating the impact of a fluid-filled > eeLl;=\eg;,
shell on two types of surfaces: hatdurely repulsive and i

adhesive. We showed that for a range of operating condi-
tions, the resultant dynamic behavior is sensitive to both the
elastic properties of the shell and the viscous properties of o
the enclosed fluid. A fundamental understanding of the dywhereee, indicates the deviatoric part efe,. The first two
namics of fluid-filled shells is particularly important in the equations follow from conservation of mass and momentum
design of effective microcapsules for pharmaceutical or othefsee Eq(1)], and the last two equations describe the isotro-
commercial applications. Our studies reveal that the physicadic relaxation of the viscous stress tensor; the eigenvalues
properties of both the outer casing and the inner fluid ca@nd\g are related to the shear and bulk viscosifiese Eq.
play a role in controlling the binding of these capsules to the7)], and must lie in the rangé-2,0). Equation(Al) ac-
specified surfaces. counts for ten of the eigenvectors 6f (six in two dimen-

In future studies, we will exploit the capabilities of this siong. The remaining ninéthree in two dimensionsnodes
approach to examine other types of problems that require aare higher-order eigenvectors ffthat are not relevant to the
efficient method for simulating fluid-structure interactions. In Navier-Stokes equations, but which do affect the boundary
particular, we will consider the flow of fluids in compliant conditions at the solid-fluid interfaces. In general the eigen-
pipes or tubes. Through the LSM, we can introduce mechanivalues of these kinetic modes are set to —1 , which both
cal heterogeneities along the length of the pipe by makingimplifies the simulation and ensures a rapid relaxation of the
some portions of the pipe stiffer than others, or in the radiahonhydrodynamic mod€<6)].
direction by making the tube stiffer as one moves from the The collision operator can be further simplified by taking
inner to the outer surface. Furthermore, through the LBMa single eigenvalue for both the viscous and nonhydrody-
we can consider not only single-component fluids, but alssmamic kinetic modef55,56. This (single) exponential relax-

Z eLlij=0,
I

> Ly = Ngel, (A2)
i

056707-12



NEWTONIAN FLUID MEETS AN ELASTIC SOLID.... PHYSICAL REVIEW E 71, 056707(2009

ation time (ERT) approximation,;=—(f;—f%/, has be-
come the most popular form for the collision operator
because of its simplicity and computational efficiency. How-
ever, the absence of a clear time scale separation between tiieve assume small amplitude oscillations, we can neglect
hydrodynamic and nonhydrodynamic modes reduces the nuhe quadratic term im,, leaving

merical stability[40,57, and can sometimes cause signifi-
cant errors at solid-fluid boundari¢®8]. Furthermore, it
does not allow independent variation of the bulk and shear
viscosities. Thus we employ the more flexible collision op-
erator of Eq.(Al).

1 o”vr2

+ —pi—— =
prar

v,

PfE

P

o (B5)

v,

PfE—_

Ip
—. B6
ar (B6)
Furthermore, as long as the compression is si@allis the
case for small amplitude oscillations

APPENDIX B: BREATHING-MODE OSCILLATIONS

19
_ _ — 2
OF A SPHERICAL SHELL plot=-kV -v==-kZ5 I,

r2or B7)
Here we summarize the theoretical analysis of the oscil
latory behavior of an elastic shell, both vacuoand when
filled with an inviscid fluid. We limit ourselves to the re-
sponse of the system after an initial radial expansion. Fol-
lowing the initial expansion, the system will contract and 1#p 194 ,Ip
expand in an oscillatory manné¢tbreathing modeJ with a 2.2 ﬁ;f -
characteristic frequency. Because of the symmetry of the sys-

tem the breathing mode is completely described by the radiajhich is an equation for undamped, longitudinal compres-
component of the displacement vectg(r,t) in the shell,  gjonal waves, witle;=1x/p; the speed of sound in the fluid.

and the radial Component of the enclosed fluid VelOCity The equations of motion can be solved by Seeking solu-
v(r,t), which furthermore only depend on the radial coordi-tjons of harmonic waves, i.e., by assuming

nater and timet. We denote the radius of the outer surface of
the shell witha, that of the inner surface with, while R

with « the bulk modulus. Differentiating both sides of Eq.
(B7) with respect to time and using E@6), we then arrive

(B8)

u(r, ) =Um)e, o, (r,t)=V(r)d, p(r,t)=P(r)et

=(a+b)/2 andh=a-h. (B9)
The displacement vectar(r ,t) in the shell is determined
by the equation of motion for an isotropic elastic mediumEquations(B2) and (B8) then reduce to
(e.g., Ref[58]), )
dld, 0}
——=—r‘Uu+—-U=0, B10
Fu_ E 24 E — drr2dr 2 (B10
Psat2 = 2(1 +») 2(1+1)(1 - 2v) ’
B1 1d ,dP o?
(B1) ﬁarza+?P:O, (B11)
with E the shell’s Young’s modulug its density, andv the '
Poisson’s ratio. Hence, fax(r ,t)=u.(r,t)f, with  the unit  with the general solutions
vector in the radial direction, EqB1) for the elastic shell .
reduces to U(r) = Ajy(wr/cy) + Byy(wr/cy), (B12)
1w _d14 2y 82) P(r) = Cjo(wr/cy) + Dyg(wr/cy). (B13)
2 2 2 r
cs ot°  arreor

Here,j,(x) andy,(x) are thenth order spherical Bessel func-

tions of the first and second kind, and the coefficients
A,B,C, andD are integration constants, that have to be ob-
tained from the appropriate boundary conditions at the inner

with ¢ the longitudinal speed of sound in the shell

E(1-v)
=\ —. B3
TN 1+ na-2) (B3
The fluid velocityv(r,t) inside the shell is described by
the equation of motion for an inviscid fluig.g., Ref[59]),

ov

PfEﬂJfV'VV:‘VP’ (B4)

with p; the fluid density andp its pressure. Fow(r,t)
=v,(r,t)f, and consequentlp=p(r,t) this reduces to

and outer surface of the shell.
For small deformations, the stress tenson the shell is
related to the displacement vectofr ,t) according to(e.g.,

[58])
o= u(Vu+ Vuh)+\V -ul, (B14)
with | the unit tensor angw and\ the Lamé coefficients

_ E \ = Ev
T2+’ T A+ -22)°

Iz (B15)
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Using spherical symmetry(r,t)=u,(r,t)f, this gives R
gsp Yy v r g 0= (B24)
au u Cs
o =N+ ZM)_r + 20— (B16) _ _
ar r Equation(B23) can be solved numerically faf. It has a

Balancing the radial stress with the pressure at the inner an%ingle solution(}, in the limit h—0,

outer surface of the shell gives, (r,t)=—p(r,t) for r=a and
r=b. Hence, the boundary conditions for the stress are Qo= 1 /w (B25)
(1-v) ’
du U(r
(N 2,u)a + 2)\—: ) ==P(r), r=ar=b.

, which is Lamb’s breathing-mode frequency for an infinitely

thin elastic shelin vacuo[52]. At finite h, there is a hierar-
chy of solutions; the lowest frequency being a generalization

These equations are sufficient to solve for the displacemer} Lamb’s breathing-mode frequency for shells with a finite

vector of an elastic shelin vacuo [in which caseP(a) thickness. The next higher frequency, which is proportional
=P(b)=0]. to R/h, is a mode where the shell’s middle surface remains

_stationary in time and the shell itself becomes thinf@em-
é)ressebjand thicker(expandeglin an oscillatory manner.

(B17)

For the fluid filled shell we need two more boundary con
ditions. The first is obtained by requiring the pressure to b
finite atr=0, givingD=0. The second is obtained by requir-
ing continuity of the normal velocity across the inner surface 2. An elastic shell filled with an inviscid fluid

of the shell, i.e., Next, we solve for the breathing mode oscillations in an

elastic shell filled with an inviscid fluid. The general solution

ve(b,t) = I . (B18) is given by Egs(B12) and(B13), whereA, B, andC have to
It vz be obtained from EqsB17) and (B19) (remember thaD
Using Eqs.(B6), (B7), and(B9), this reduces to =0). Since,P(a)_:_O, gs.for the elastic shdl vacuq the first
boundary condition is identical to that of the empty shEl.
1 dpP (B20)]. Using P(b)=Cjy(wb/c;), the second boundary con-
U(b) = CZar| (B19)  dition is obtained from Eq(B20) by substituting8=wb/cs
Pt r=b for « and changing the right-hand side to
—(b/4u)Cjo(wb/cs). With Egs. (B12) and (B13), and
1. An elastic shellin vacuo djo(x)/dx==j,(x), the third boundary conditiorfB19) re-
First, we solve for the breathing mode oscillations in anduces o
elastic shellin vacua Substituting Eq(B12) in Eq. (B17) c wb
and usingP(a)=0 gives Aj1(B) +Byi(B) =- oprC j1<c—) (B26)
fof f

Al saj =] +B| s - =0. (B20
[ o) Jl(a)] [ ol ) yl(a)] (820 Eliminating A, B, andC and simplifying the result using the

Here, a=walc, the constans is defined as same notation as in EGB23) gives
Mt 1-v 21 L0%D+(s0%2- 1)(s0%2 - ) Jtar(h) - (1 +s022D)0f
4u  2(1-2v)’ sQbio(vQb
_ _M[(SQZaZ - 02ab - 1)tanQh) + Qh

and we used the fact thdf,(x)/dx=f,_1(X) = (n+1)f(X)/X, W ( QB)
with f,, eitherj, or y,.. The boundary condition at=b leads J1l¥
to an similar expression by substitutil®F wb/c for « in +3Q3é‘126:|, (B27)
Eq. (B20). Eliminating A andB then results in

which can be solved numerically for given valuesRyh, v,

sayo(a) ~yi(a@) _ sBYo(B) ~ V1(B) (B22) and
sajo(@) = ji(@)  sBjo(B) — (B’
c P
which can be simplified t660] y= C—: f= ;f- (B28)
tan(Qh) _ 1+s0%b (B23) Expanding Eq(B27) in powers ofh and keeping only the
Oh 028b + (50282 - 1)(s0%?- 1) lowest order gives

Here, ﬁ:h/R,é:a/R,B:b/R, and the dimensionless fre- [1 _ ﬂjo(ﬂ] (&)2: 1 (B29)
quency() is defined as psh ¥Qj1(vQ2) 1\ Qg 7
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obtained by Rand and DiMaggi$61] and Engin and — =0, (B30)

Liu [62] for n=0, and reduces to that obtained from mem- = . . _
brane theory fory=1/2 [63]. Note that for p;/pe— 0 which is the frequency equation for radial oscillations of an
Eq. (B29) red 00=0 th ‘ it sf " inviscid fluid inside a rigid spherical cavity with radius

q. (B29) reduces t0Q=0q, the correct result for an tpa same result could have been obtained directly, by solv-

infinitely thin elastic shelln vacuo For y— o, with ¢ finite,  ing Eq. (B11), subject to the boundary conditidiB19) for

with Qg given in Eq.(B25). This result is identical to that ) (wb)
I1
C

it degenerates to U(b)=0.
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